
CIMS Center for Integrated
Manufacturing Studies

ROCHESTER INSTITUTE OF TECHNOLOGY

Office of Naval Research
Grant N00014-07-1-0823

FINAL REPORT
1 Variants Menu

Bus Fleel [w]

70t-708.GLLIG. '004)

-
Aw System / Kn«ief -w

Valves & Swlch -
Aa soienorf Valve 1

I
1 Conditions

rTtysicai Ofrsci (jtofs
Poor

mm tmm
E .ctisr.e Wt
Fuel LMk49«
Exc«stiveCor

R. Y , HP Defense Systems Modernization
* 1 * X and Sustainment Initiative

Center for Integrated Manufacturing Studies (CIMS)
Rochester Institute of Technology (RIT)

111 Lomb Memorial Drive ■ Rochester, NY 14623-5608
phone: (585) 475-6091 ■ fax: (585) 475-5455 ■ www.cims.rit.edu

^Ol^^Ui

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information Is estimated to average 1 hour per response, Including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of Information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE CDD-MM-yVYY)

31/03/2014
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

29-Mar-2007 to 31-Mar-2013
4. TITLE AND SUBTITLE

Defense Systems Modernization and Sustainment Initiative
5a. CONTRACT NUMBER

N/A
5b. GRANT NUMBER

N00014-07-1-0823
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Nasr, Nabil, Z.
Thurston, Michael, G.
Haselkom, Michael, H.

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Rochester Institute of Technology
7 Lomb Memorial Drive
Rochester, NY 14623-5603

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
495 Summer Street Suite 627
Boston, MA 02210-2109

10. SPONSOR/MONITOR'S ACRONYM(S)

ONR

11. SPONSOFi/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release; Distribution is Unlimited. Copyright information included.

13. SUPPLEMENTARY NOTES

None

14. ABSTRACT

The objective of this work was to develop and demonstrate technologies that enhance the performance of defense weapons
and support systems, while helping to monitor and control total ownership costs. Three different research and development
areas were the focus: Sustainment Testbed; Platform Lifecycle Decision Support; and Remote Monitoring & Advanced
Concepts. The outcomes of the study include technology to aid in the design of new military platforms, technologies to
support efficient and effective platform operation, and technologies to extend the life of aging platforms.

15. SUBJECT TERMS

Military Weapon Platforms, Reliability and Maintainability Assessment, Sustainment Testbed, Platform Lifecycle Decision
Support, Remote Monitoring, System Resilience and Survivability

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

UNCLASS UNCLASS UNCLASS

17. LIMITATION OF
ABSTRACT

U.U.

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

Dr. Nabil Nasr
19b. TELEPHONE NUMBER (Include area code)

585-475-5106

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.16

CIMS Center for Integrated
Manufacturing Studies

ROCHESTER INSTITUTE OF TECHNOLOGY

Office of Naval Research
Grant N00014-07-1-0823

FINAL REPORT
Table of Contents
Executive Summary ES1

Introduction to CIMS and RIT IN1

Research Area 1: Sustainment Testbed ST1

Research Area 2: Platform Lifecycle Decision Support PLDS1

Research Area 3: Remote Monitoring and Advanced
Support Concepts RM&ASC1

Research Area 4: System Resilience and Survivability SR&S1

R. T , T"1 Defense Systems Modernization
X X and Sustainment Initiative

Center for Integrated Manufacturing Studies (CIMS)
Rochester Institute of Technology (RIT)

111 Lomb Memorial Drive ■ Rochester, NY 14623-5608
phone: (585) 475-6091 "fax: (585) 475-5455 ■ www.cims.rit.edu

2. Executive Summary

The Center for Integrated Manufacturing Studies (CIMS) at Rochester Institute of
Technology was awarded the grant entitled Defense Systems Modernization and
Sustainment Initiative (N00014-07-1-0823) from the Office of Naval Research (ONR) for
the period March 29, 2007 to March 31, 2014.

CIMS' research focuses on developing and demonstrating technologies that enhance the
performance of defense weapons and support systems, while helping to monitor and
control total ownership costs. CIMS collaborates with a wide range of Department of
Defense organizations, such as the Office of Naval Research, Naval Air Systems
Command, Marine Corps Systems Command, the Naval Air Depots, Program Manager -
Light Armored Vehicle, Marine Corps Combat Development Command, and Army
Research Lab, in a wide variety of life-cycle engineering projects on several major
weapons systems. In support of these diverse customers, CIMS applies programs to
predict equipment health and failure, reliability and maintainability assessment, life-cycle
technology insertion, material analysis technologies to predict the service life of systems
and components, and data analytics. These efforts included technology to aid in the
design of new military platforms, technologies to support efficient and effective platform
operation, and technologies to extend the life of aging platforms.

The efforts conducted by CIMS are organized in terms of three different research and
development focus areas: Sustainment Testbed; Platform Lifecycle Decision Support;
and Remote Monitoring & Advanced Concepts. System Resilience & Survivability is
another R&D area that was not pursued by CIMS due to the inability to find a partner for
the proposed work. A number of projects were successfully completed during the
contract period in the other three areas. Results in each focus area are described below.

Sustainment Testbed program is advancing technologies that will allow the Department
of Defense to maintain vehicles beyond the end of their planned service life. CIMS
performed multiple programs focused on understanding material aging and applying the
knowledge to component restoration and material-based prognostics.

Through these efforts, CIMS has assisted in characterizing the aging of batteries both.
individually and in packs. As a result, strategies were identified that would allow
individual cell replacement within a larger pack with only a slight degradation in pack
performance, assuming the use of active cell balancing within the pack. These strategies
can extend the life of packs with early cell failures. Additionally, CIMS evaluated
methods of estimating cell capacity and state of charge. The techniques may be used to
identify batteries that have considerable capacity remaining for use in secondary, less
demanding applications.

CIMS also evaluated methods for remanufacturing military parts with needle-bearing
contacts, such as steering boxes or pump shafts. These components are at risk of quick,
catastrophic failures as the surfaces degrade. Currently, if these parts are inspected and

ES1

degradation is identified, the parts are replaced with new OEM components which can be
costly. CIMS was able to show that a twin-wire arc thermal spray coating was a feasible
and affordable approach to remanufacturing these contact critical surfaces.

Gear cracking is another potential catastrophic failure mechanism within many
applications, such as planetary gear sets. CIMS was able to initiate cracks in gear teeth
while utilizing an improved feature identification method that improved the ability to
identify the crack initiation. Once the cracks have been detected, CIMS measured the
propagation of the cracks in an effort to characterize the impact of microstructure on
crack propagation. Utilizing this data, various models were tested in an attempt to
estimate the time-to-death for all gears, ultimately resulting in identification of two
models that could accurately predict time-to-death.

3D laser scanning can capture large quantities of point-cloud data which is useful for cast
parts; however the accuracy is not fine enough for precision surfaces. CIMS was able to
develop techniques for collecting 3D laser scanning model data and augmenting it with
high measurement accuracy data from a CMM to reverse engineer complex parts with
both critical and non-critical surfaces. Additionally, it was proven that the model could be
utilized to generate a mold design for casting the component.

Finally, CIMS collaborated with the Program Manager for the Light Armored Vehicle
(PM-LAV) to test a fuel catalyst that was advertised to decrease emissions and increase
fuel efficiency. Utilizing an engine dynamometer, gas exhaust analyzer, precision fuel
meter and a data acquisition system, CIMS was able to perform testing of the fuel catalyst
at multiple engine test points (engine speed and torque settings). The tests showed that
the catalyst produced no detectable changes in CO or NO, a significant increase in N02
was detected, and the efficiency increased by approximately 2.3%.

Platform Lifecycle Decision Support is a total system approach to optimizing life-cycle
performance through planned modernization and step-by-step improvements in
technological capabilities. LEEDS® was initially developed for the remanufacture of the
Surface Effect Ship-200 through a project with ONR. Through various ONR funded
projects, the capability of LEEDS® has been extended to provide engineering support
throughout the platform life cycle.

During the contract period, CIMS re-evaluated the capabilities and users that LEEDS
would be applicable to. The result of this analysis was a list of features, users and
interfaces that would define what future iterations of LEEDS should include. Each user
interface identified included the identification of applicable features, as well as the users
and possible secondary users of those features.

Additionally, as LEEDS would need a major update in features, LEEDS also required an
upgrade to its architecture. The existing LEEDS architecture is outdated and does not
support some of the newer browser capabilities. CIMS performed an extensive
investigation of technologies and identified GWT and Portals as two contrasting but
highly capable approaches. As a result, small proof-of-concept implementations were

ES2

made using each technology. It was determined that the portal technologies provide many
features built into their framework that could be utilized to the benefit of LEEDS users,
for example, roles, security, and content management. GWT, on the other hand, is very
useful for developing a highly interactive, desktop-like application within the browser.

One of the key elements of the LEEDS system is the storage of data. Previously, the
database for LEEDS was developed to meet specific needs and updated as system
enhancements were performed. While reconsidering the functionality of LEEDS, the time
was appropriate for evaluating available data models for the system. In particular,
MIMOSA and the EIA-836 CM data exchange standards were evaluated. Although EIA-
836 had broad capabilities, the model was more difficult to understand and did not cover
all of the aspects we were looking for in a CM, maintenance tracking, and health
monitoring system. MIMOSA, which the existing AHM data model is based on, was
determined to be more appropriate for the needs of LEEDS.

Additionally, a demonstration of Case Based Reasoning for maintenance aiding was
implemented as a standalone application. This was one of the features desired within
LEEDS and was developed as a demonstration that could easily integrated into LEEDS.
Through this demonstration, we were able to demonstrate the ability of a maintainer to be
assisted in making maintenance decisions based on previously successful resolutions to
similar maintenance problems.

Remote Monitoring & Advanced Support is the research of enhanced heath assessment
technologies and health management approaches for high-value equipment and fleets of
equipment. The advancement of the remote monitoring includes the off-vehicle tools that
help maintainers assess the system; an example is reliability centered maintenance
approaches. During the contract period, CIMS performed multiple smaller programs that
were divided into the following categories: Applied Remote Monitoring and Advanced
Support Technologies; AHM 3rd Generation Hardware Improvements, AHM 3rd
Generation Software Improvements; Maintainer Tools; and Advanced Anomaly
Detection and Diagnostics Framework Technologies.

Applied Remote Monitoring and Advanced Support Technologies

CIMS implemented an AHM system on a UAV engine to demonstrate the capabilities of
health monitoring on unmanned vehicles. The data that was collected allowed CIMS to
develop methodologies for predicting glow plug failure.

In coordination with PM-LAV, an RCM analysis was performed on the LAV AT A2
turret design. As the turret was still under design, the RCM analysis provided a number
of recommended preventative maintenance tasks.

A system for collecting health monitoring data was implemented on the engine
dynamometer at CIMS. The system allowed for collection of LAV engine data under
controlled conditions for development of algorithms. Additionally, the system provided a
testbed for implementing and testing new AHM technologies. For example, CIMS

ES3

implemented a framework for predicting normal behavior of signals which allowed for
identification deviation from normal. Specifically, fuel use was able to be predicted
utilizing engine speed, engine torque, engine load, and intake manifold pressure.
Deviations from the predicted value would indicate poor engine performance.

As large quantities of data became available from the Embedded Platform Logistics
System program, it was beneficial to analyze the data, specifically alerts, to identify areas
for improvement with AHM. Although many of the alerts were unable to be identified as
actual faults or false alarms, it was determined that some of the alerts were caused by
poor alert limits. As the data was collected and analyzed, limits could be updated and the
occurrence of false alarms decreased.

CIMS equipped a Canadian Grizzly (similar to an LAV) vehicle with an advanced set of
hardware as a platform demonstrator. The system included a more powerful processor,
more memory, expanded storage capacity, and a broader set of sensors than utilized
under the EPLS program. As new software was developed, it was pushed to the
demonstrator for a final performance analysis.

AHM 3rd Generation Hardware Improvements

In an effort to expand the capabilities of AHM, CIMS implemented a prototype data
acquisition controller (DAC) capable of collecting vibration data. The goal of the
program was to develop a DAC that could run MATLAB generated code while collecting
the vibration signals. The prototype was unable to achieve the desired 100 kHz sampling
rate due to contention for resources within the hardware. Additionally, generating C code
from MATLAB required significant understanding of the project.

In order to demonstrate the vibration DAC, CIMS developed a protocol for transferring
waveform data across the J1939/Can bus. This protocol was implemented and tested on
the AHM system on the UAV. Although the protocol was designed to be capable of
continuous waveforms, the bus speed limits the actual data rates. In the demonstration,
the vibration data was collected over a short period based on a trigger.

CIMS evaluated the feasibility of using a USB based interface to an existing vehicle
databus. By locating the databus interface outside of the system health node, the node
may be located inside the vehicle with complete disregard for where the databus interface
is. Although it is feasible to collect data through a USB interface board, the USB bus is
very susceptible to noise and would need significant shielding to avoid errors.

CIMS also evaluated the ability to run the existing AHM software on low-cost ARM
processors, as opposed to all previous x86 processor implementations. The conversion to
ARM was fairly seamless as many of the existing packages were available for ARM.
Once the system was up and running, a baseline test was performed that showed AHM
used only 30% of the CPU, even at high load.

OBD-II is the protocol typically used for diagnostics on light vehicle fleets. As the

ES4

military does own a significant number of light vehicles, CIMS developed an OBD-II
interface capable of collecting data from light vehicles and storing it in AHM. The OBD-
II protocol differs slightly from previous protocols as it requires the connected system to
request data, requiring changes within the AHM application. The system was
demonstrated by collecting vehicle data from multiple manufacturers and multiple model
years, spanning pre- and post-CAN format OBD data.

AHM 3rd Generation Software Improvements

A limitation on the existing AHM software architecture was the utilization of MySQL,
which is limited by licensing, for the onboard database. To remove this limitation, CIMS
developed a flat file data storage mechanism which is more compact, faster and reliable.
Development also included a receiver which would parse files and upload the data to the
master database.

J1939 allows for multiple ECUs to report the same signal, however, previous versions of
AHM assumed a signal came from one ECU. To fix this problem, CIMS implemented a
signal selection mechanism allowing the ECUs to be prioritized. Data would then be
stored from the highest priority ECU sending the signal. Additionally, the system keeps
track of which ECU the stored data was received from.

During development of the Vibration DAC, it became apparent that a tool for visualizing
waveform data was necessary. CIMS developed a simple tool for visualizing the
waveform data and allowed the data to be stored as a CSV file.

In an effort to make set-up of AHM easier to perform by an engineer, CIMS developed a
system for programming data acquisition nodes without writing code. The system allows
an engineer to use a graphical user interface (GUI) to assign the databus conversions and
any additional calculations to incoming channels. The resulting outputs can be assigned
to an appropriate J1939 packet.

Expanding on the existing AHM capability on JI939 or Jl 708 equipped vehicles, CIMS
implemented the collection of Diagnostic Trouble Codes (DTCs). The DTCs are
collected and stored into new data tables in the AHM database.

CIMS also developed a simple tool for parsing Jl 939 and Jl 708 databus packet captures.
The tool would parse the packets, create a listing of all available signals, and provide a
graph of each signal. This system allows an engineer to determine what signals exist on a
platform, thus enabling the proper set-up of AHM.

Maintainer Tools

The Maintainer's Graphical User Interface (MGU1) tool developed by CIMS provides a
mechanism for interrogating the vehicle or master database and visualizing signal data.
During this program, CIMS enhanced the capability of the MGUI tool by implementing
dynamic downsampling of large datasets, allowing annotations on graphs, allowing

ES5

selection of multiple missions, providing mission filtering capability, allowing the user to
change the missions being viewed from the graph screen, and allowing the viewing and
updating of real-time data.

Advanced Anomaly Detection and Diagnostic Framework Technologies

C1MS performed multiple projects in efforts to better utilize the available data to reduce
downtime. In one project, CIMS utilized a regressions-based model to identify an oil
pressure anomaly prior to it being detected as a DTC. Additionally, CIMS evaluated
regressor models for identifying relationships between signals, such as predicting oil
pressure based on oil temperature and engine speed.

In efforts to ensure valid data is being utilized in AHM algorithms, CIMS implemented
multi-sensor fault detection (MSFD). Dempster-Shafer was utilized to identify a noisy
battery shunt current measurement and cross-correlation was utilized to identify
temperature faults in planetary wheel hubs. CIMS also utilized multiple regression and
classifier models to improve prognostics around reactant ignition in a solid oxide fuel
cell.

In efforts to speed up the processing of AHM data in a typical data mining operation,
CIMS evaluated the use of a traditional data warehousing system which would require a
one-time translation of asynchronous AHM data into a synchronous data set. Once the
translation was complete, typical data mining operations saw a drastic performance
improvement.

Prior diagnostic and prognostic work in CIMS focused heavily on mechanical systems.
CIMS chose to test the feasibility of prognostics on a switched-mode power supply on a
HALT test fixture. The study proved successful, showing the real-time correlation
predicted the failure 30 minutes early under accelerated conditions.

ES6

CIMS building on the RIT campus

3. Introduction to the Center for Integrated Manufacturing
Studies at Rochester Institute of Technology

Since 1992, the Center (CIMS) at Rochester
Institute of Technology (RIT) has joined
analytical research practices with applied
technology to help manufacturers remain
competitive in the global marketplace.

CIMS is a dynamic collaboration of
dedicated engineers and technicians
supported by RIT faculty and students, as

well as academic, industry and government resources. Over the past two decades, CIMS has
worked with 160 sponsors on 300+ separate research, development, and application initiatives.

The center is led by Dr. Nabil Nasr, an international
expert in sustainable design and environmentally
conscious manufacturing who has spent over two
decades assisting companies and government
agencies in enhancing profitability while also
reducing their environmental impact.

In response to the significant impact the center's
research has achieved, Dr. Nasr and CIMS has
received several national honors, including the
Excellence in TBED (Technology-Based Economic
Development) Award (2011), U.S. Department of
Commerce's Economic Development

Administration's Excellence in University Led Strategies Award (2009), National Center for
Advanced Technologies' 2004 Defense Manufacturing Excellence Award and the National
Pollution Prevention Roundtable's 2006 MVP2 award.

Golisano Institute for Sustainability (GIS)

One of several CIMS research bays

Dr. Nasr also serves as Director of the Golisano Institute for Sustainability, a multidisciplinary
academic unit of RIT that grew out of CIMS with a mission to undertake world-class education
and research missions in sustainability. GIS academic and research programs focus on
sustainable production, sustainable energy, sustainable mobility, and ecologically friendly
information technology systems. These programs are led by a multidisciplinary team of faculty
and researchers who collaborate with organizations locally, nationally, and internationally to
create implement able solutions to complex sustainability programs.

INI

Academic activities at GIS are complemented by five state-of-the-art research units:

• Center for Remanufacturing and Resource Recovery (C3R): an internationally recognized
center for applied research in remanufacturing.

• Center for Sustainable Production (CSP): dedicated to enhancing the environmental and
economic performance of products and processes.

• Center for Sustainable Mobility (CSM): focused on developing viable technologies for
sustainable transportation systems and the support of complex equipment systems.

• New York State Pollution Prevention Institute (NYSP2I): a research and technology
transfer center funded by the New York State Department of Environmental
Conservation to provide a state-wide, comprehensive and integrated program of
environmental research, technology development and diffusion, outreach, training and
education.

• NanoPower Research Labs (NPRL): dedicated to the development of new materials
devices for power generation and storage
for microelectronic components and micro-
electromechanical systems (MEMS).

In late 2012, GIS began transitioning into its new
headquarters building on the RIT campus. This new
75,000 sq. ft. LEED certified research building
(targeting LEED Platinum certification) is a state-
of-the-art laboratory for scientific discovery and
experiential learning consisting of: 5 systems
integration test beds; 7 sustainability technology
support labs; and computing and collaborative
spaces to support research.

and

New GIS headquarters building

Rochester Institute of Technology (RIT)

Founded in 1829, RIT is an internationally recognized leader in professional and career-oriented
education enrolling more than 18,000 students. RIT is coeducational and has one of the oldest
and largest co-op programs in the world..

RIT, the 111 largest private university in the nation, offers 350 programs of study in eight
colleges including the Kate Gleason College of Engineering, the E. Philip Saunders College of
Business, and the B. Thomas Golisano College of Computing and Information Sciences. The
university is internationally respected for its research and educational programs in imaging and

IN2

color science, photography and remanufacturing
as well as its work in experiential learning and
cooperative education.

RIT's modem 1,300-acre campus is located in
Rochester, the third largest city in New York
State.

R1T campus

IN3

Sustainment
Testbed

4. Sustainment Testbed

4.1. Description of the Sustainment Testbed

The Sustainment Testbed research area is designed to develop new technologies that
address the unique challenges of maintaining current Department of Defense

equipment within or beyond its normal service life in a cost-effective way. Material
reliability and material availability are key metrics in the effort to extend the life of

current inventory equipment. New technologies have been evaluated and developed to
provide unique sustainment tool sets for application to selected validation and
demonstration platforms.

The Sustainment Testbed consists of several related research initiatives applied to the common
purpose of platform readiness improvement, life-cycle cost reduction, and useful life extension.
The three research initiatives undertaken that support the goals of the Sustainment Testbed are:
Material Aging & Prognostics; Material Restoration; and Rapid Reverse Engineering.

Material Aging and Prognostics
Material aging research includes the analysis, evaluation and modeling technologies for
identifying and quantifying the amount of aging experienced by a platform or component and for
predicting the remaining useful life. Critical to the performance of this research is the
incorporation of physics of failure for identifying the type of material
aging of a component. Through this research, the testbed was able to
develop inspection methods and simulation models for surface wear and
fatigue of metals.

Material Restoration
Material restoration research includes the development of processes for
repair or restoration of a component to its original function or dimensions
at the material level. Material restoration is an extension of the work
performed in Material Aging and is thus the next logical step in the
sustainment of platforms. This area focused on the utilization of coatings
and coating processes for surface repair and life extension of worn or
cracked metal components. Metal flame spray

Rapid Reverse Engineering
Rapid reverse engineering is the process of utilizing laser scanning technologies to enable design
capture for mechanical components. Research work in this area focused on the development of
technologies for converting a solid model from a laser scan into a computer model capable of
being utilized for replication of parts and development of technical data packages.

4.2 Sustainment Testbed Research Objectives, Progress, and Results

A primary objective of the Sustainment Testbed research is to develop advanced platform
sustainment technologies that may be applied for U.S. Marine Corps vehicles. Several different

ST1

research objectives supported this end goal: crack detection in spur gears; development and
evaluation of a remanufacturing process for contact surfaces of military parts that have needle-
bearing contacts; analysis of battery pack cell replacement strategies; laser scanning
development; and evaluation of a fuel additive for increased fuel efficiency in the Light Armored
Vehicle (LAV).

During the contract period, CIMS continued to evaluate and model material surface degradation
and fatigue failures. Crack detection in gears is critical to the prevention of catastrophic failures.
In order to understand the physics of failure of gear breakage, the program set out to analyze
both stages of the gear service life: crack initiation and crack propagation. The initial study of
gear crack initiation allowed for the identification of cracks at the earliest phase, subsequently
providing samples for further study during the crack propagation stage. Analysis of the gear
under controlled conditions allowed for study of the propagation of the crack, as well as
assessment of the effects of the material microstructure on the crack. The study resulted in
identification of condition indicators that may be utilized for crack detection and damage
estimation.

Previously, CIMS developed a process for removing a damaged surface coating from an LAV
driveshaft and utilized a process for a new flame spray coating to bring the driveshaft back to
Original Equipment Manufacturers (OEM) specifications. Under this contract, CIMS continued
the evaluation of coating technologies for surface wear specifically for surfaces in contact with
needle-bearing contacts. Currently, if a contact surface is inspected and identified as degraded,
the part must be scrapped. Rather than scrapping a part that is structurally sound except for
minor surface degradation, a solution was sought to repair the materials surface and extend the
life of the component. A process was developed utilizing a twin-wire arc thermal spray solution
and tested for surface hardness, thus proving that the surface coating may be a feasible
alternative to scrapping the entire part.

As the military makes a concerted push to reduce
the use of fossil fuels and utilize renewable energy,
new modes of failure begin to affect the capability
of our military forces. For example, as the
utilization of solar energy increases so does the use
of batteries as a storage mechanism for that energy.
In an effort to understand the far-reaching
implications of battery replacement on the
sustainment of military forces, CIMS developed a
program for: evaluation of replacement strategies;
evaluation of the potential to repurpose batteries for
less demanding uses; and methods for increased
accuracy of battery cell-age and state-of-charge
estimation. The program determined that individual
cells in a battery pack with an early-life failure may be replaced without any significant impact to
the pack. However, replacement of cells causing a significant mismatch between cells reduced
the efficiency of the pack. A strategy of active cell management may be employed to minimize
the impact of mismatched cells.

As complex military systems age, it is increasing difficult to obtain components for these legacy
systems because the OEM has stopped producing the component and the military does not have a

ST2

Battery pack testing

complete technical data package with which to obtain a quote from other vendors. Reverse
engineering is a means of developing the technical data package, including but not limited to
mechanical drawings, electrical specifications, circuit board designs, and component
specifications. During the contract period, CIMS focused efforts on reverse engineering
mechanical components through use of a 3D laser scanning system and a Coordinate Measuring
Machine (CMM). CIMS was able to create solid models that included the overall part geometry
from the laser scanner and features from the more accurate CMM.

As previously stated, the military is pushing for a major reduction in the use of fossil fuels to
develop a less energy dependent military and to reduce the potential for loss of life in transport
of materials to critical areas. The U.S. Marine Corps was provided a fuel catalyst for the Light
Armored Vehicles that claimed to increase fuel efficiency and reduce emissions. CIMS
performed a series of tests on an engine dynamometer to compare the efficiency of the catalyst
enhanced fuel against regular fuel. After running multiple load and speed profiles, CIMS
determined that the catalyst may provide a minimal fuel efficiency increase while significantly
increasing nitrogen dioxide, a prominent air pollutant.

4.3. Sustainment Testbed Projects

The Sustainment Testbed program funded by this contract is enhancing CIMS' technical capacity
and supporting numerous DoD programs and platforms. During the contract period, the program
focused on understanding material aging and applying this knowledge to structural health
monitoring, component restoration, and material-based prognostics.

Projects:

• Replacement Strategies for Maintaining and Repurposing of Lithium-ion Batteries
o Cell Aging
o Pack Studies
o Estimation of Cell Capacity and State-of-Charge

• Remanufacturing Process Development
o Twin-wire Arc Thermal Spray Coating of Metal Power on Steel

• Crack Detection in Spur Gears
o Crack Initiation Studies
o Crack Propagation Studies
o Feature Analysis and Feature Fusion

• Reverse Engineering
o 3D Laser Scanning Development and CMM Integration

• LAV Fuel Efficiency Testing

The projects are fully described in the next section.

ST3

Sustainment Testbed

PROJECTS

Sustainment Testbed Projects

Replacement Strategies for Maintaining and Repurposing of Lithium-ion Batteries
In many demanding applications (e.g., communications), rechargeable batteries are replaced at
an early point in their lives while they still have considerable capacity left. These batteries can be
used for less-demanding applications, such as storage in expeditionary power systems. A related
issue is the maintenance of larger packs: there is considerable apprehension related to mixing
new and old batteries. Methods need to be developed to understand the relative health of
individual cells in those packs so that sustainable decisions can be made around repurposing the
cells for less-demanding applications and maintenance of packs. Many issues are currently under
debate, such as the need for cell matching when replacing cells within a pack, overall cell
capacity, and matching numbers of cycles. The replacement strategies will address three distinct
problems: 1) Cell aging and relationship between individual cell aging and aging of cells in
packs; 2) Case studies of replacement strategies related to maintenance and repurposing; and 3)
Estimation of state of health and state of charge of used cells. These three problems are described
in more detail below.

Cell Aging

Problem
Original Equipment Manufacturers (OEMs) typically provide aging data only for early life aging
which limits the ability to design longer life systems. There is a general perception that cells age
faster when they are operated in a pack, possibly due to mismatched cell impedances, than when
they are aged individually.

Goals
There were two goals: obtain cell aging data for different Li-ion chemistries beyond the point
published by OEMs and their dependence on the operating conditions; and relate the pack cell
aging to individual cell aging.

Approach
We conducted an empirical study of aging standard 18650 lithium-ion cells of different
chemistries, including representatives from cobalt oxide and iron phosphates. The cells are first
aged individually. Figure la shows the capacity fade of cobalt oxide cells. Representative
impedance spectra of the aging cells from this family are shown in Figure lb.

ST4

20

I

s

"^SsBBg
— 10
— u »
« 12
— 13

— 14
— 15
— 16

2

3—55
• 4 — 56

-48—57
-5—58

51 — 6
52 — 7
53 — e
54—9

90

n
70 J? 1 -.
M

.'

05
100 200 300 400

Number of eyelet v

500

SO 9

'.-
(0

20

(a)

Charged

— Initial
• Second 20 Cycle*

—• Third 20 Cycle*
• Fourth 20 Cycle*
• Fifth 20 Cycles

— Sixth 20 Cycles
• Seventh 20 Cycles

 55— (b)

Figure 1. Individual aging of cells: (a) Capacity vs. number of cycles; (b) Impedance (limited to 140 cycles for
clarity).

The cycling of cells was periodically interrupted to record impedance spectra. Traditionally, the
industry uses the real part of the impedance at/= 1 kHz as the aging metric. Our measurements
suggest that the real part of the resistance at low frequency, in the Warburg region, show more
sensitivity to battery aging (Figure 2a)1. The scatter plot of the resistance vs. capacity, shown in
Figure 2b, confirms that the relationship persists as the cell age.

The real part

of Warburg

63

d
u 60

31
59

I
=: 57

Correlation coefficient o = -0.78

• C1S1
• C1S2
■ C1S3
• C2S1
• C2S2
• C2S3
• C3S1
- C3S2
• C3S3

(b) *

215 2.20 2.25
Capacity r(Ah]

Figure 2. Individual aging of cells: (a) Capacity as the function of number of cycles; (b) Impedance (cut off at 140
cycles for clarity).

The cell capacity shows significant sensitivity to temperature. Figure 3 shows this dependence in
two steps: the capacity strongly depends on the cell temperature, while the cell temperature is
related directly to the ambient temperature. A few degrees Celsius will change capacity
approximately by a percent, which is significant, considering that some of the cells are only used
within 20% of their capacity.

Chen-Mora model, described later (Figure 8), provides means for explaining better sensitivity at low frequency. At
low frequency, the total resistance is the sum of all resistive parameter, i.e., Re{ZBatt} = RUM + ^TL + ^xs, while at/~
1 kHz we have Re{ZBatt} ~ ^Batt-

ST5

Temperature Effect
3,, Ceil #14: p ■ 0.979; 7..„ - 1.196 *T.^ * 2.295

There is a strong correlation between
the ceil temperature at the end of 30.0

discharge and the capacity.
/ Mi

p-0,975031/51454 o

004
^0 s2».0

0.03
1'.

S 28.S
0.02 Ul %

i ooi /• 0,5 7 u 28,0
ii 000

-«.01 ..y <°>
0.0 jj

-0,5
"27 5

-0.02 IJ1 27.0
-0.0J

it-> .0,003706*0.010969 -i; -i '. 26A
"•"-3 -2-101234!

4I •llh.«rK)ofliisch»-9«|-Cl

(b)

20,5 21.0 21,5 22,0 22,5 23,0 23 5
r„,l-c)

Figure 3. Temperature dependence of the capacity, (a) The temperature difference at the end of discharge for
subsequent cycles vs. accompanied change in capacity. The Pearson correlation coefficient is ~ 97%. (b) The
dependence of the temperature at the end of discharge is strongly dependent on the ambient temperature.

To compare aging of individual cells to aging in a pack, a small 3x3 pack is built in 3s3p
configuration, where three cells are connected in series to form a string and three such strings are
connected in parallel. Figure 4a, Figure 4b, and Figure 4c show the photograph of the test stand,
the pack configuration and the schematic, respectively.

Figure 4. 3x3 battery pack in 3s3p configuration: (a) Test stand; (b) Zoom into the pack; (c) Schematic.

The experiments did not show any significant difference in aging cells individually and aging
them in this pack. Figure 5a shows that the capacity fade of single cell aging from -100% to
-90%, with the average slope of capacity - -0.11%/cycle. Figure 5b shows the same aging from
the cell in the 3s3p pack. The average rate of change was approximately the same: —0.1%/cycle.

ST6

T 102

* 0

o 2|-

i 4

40 60 80
Cycles N

100 120

102

^1 100 ?

n
9G

94

92

90

= 99.38
= 9.45

20 40 60 80
Total number of cycles i\mu.

cr

25 Hi
100 120 *

20 60 100
Cycles .V

•—• C1S1 ' C2S2 »-» C3S3
■—■ C1S2 ►-. C2S3 ■ average
♦—♦ C1S3 *-* C3S1 • • • Avg. slope
»—♦ C2S1 ■ C3S2

Figure 5. Capacity fade for cells for: (a) Individual cell aging; (b) Aging cell in a pack.

Results
Several types of cells are individually aged and characterized, resulting in a useful database for
characterization of the used cells. Strong dependency of the cell capacity was found. The
experiments did not find a significant difference between individual cell aging and aging of the
cells in a 3s3p pack.

Pack Studies

Problem
Maintenance of large packs will require cell replacement in case of early life failures. Many
issues are currently under debate, such as the need for cell matching when replacing cells within
a pack, or overall cell capacity, or even matching numbers of cycles. Building packs from used
cells is challenging due to mismatches of the cells.

Goal
The objective of the study is to investigate maintenance strategies in lithium-ion battery packs
and rebuilding packs for less-demanding applications.

Approach
The 3s3p pack described above (and in Figure 4) was used to explore the cell-replacement
strategies empirically. We examined two scenarios. The first scenario represents the case when
one cell in a pack fails early with respect to the expected life of the pack. To simulate this
situation we pre-aged cells in the individual pack tester to 90% of their initial capacity. In
demanding applications, such as electric vehicles, the cells are considered usable only when the
capacity is higher than 80% of the nominal capacity. Therefore, for these applications, cells aged
down to 90% of their nominal capacity are at -50% of their useful life.

ST7

I2

t2

V
u 1

2,4

2.3

I
- 2.2 h

fa.:
■
0 2,0
■ a

1.9

1.8

Pack cycling

90 % CCllS

•-•CISlo *~iC2Sl S«J
■•ClSlr •<C2S2 «C3S2
♦-♦C1S2 •-•C2S3 fl«iC3S3
»-»ClS3

I I J-L

100
Or

c
I
o

90 J

85 |

60 100 140 180 220
Cycles .v M« &

- 80

Figure 6. Capacity fade of cells in a pack: (a) All new cells; (b) Pre-aged cells with one new cell.

Comparing capacity fades of the cells of the pack comprised of eight aged and one new cell to
the capacity fades of the reference pack, plotted in Figure 6b, shows that a new cell nicely
coexists with the aged cells and did not introduce any obvious increase in the overall rate of
capacity fade or decrease in efficiency. The slope of the capacity fade of the new cell is higher
than that of the aged cells, but this behavior is consistent with cell aging in general. Capacities of
the new cells in Figure 6a fade faster over the course of the first 100 cycles and the relative rate
of capacity degradation slows down.

To create the second scenario for cell replacement strategy, two 3S3P packs were first subjected
to deep discharges, as shown in Figure 6a and Figure 6b. The deep discharge events can be
considered major pack failures and the cells recovered from these deeply discharged packs are
good candidates for simulating cell repurposing processes. After the deep discharges, the
individual cells were recovered by charging them at low current (100 mA). This process
recovered 12 out of the original 18 cells. The remaining 6 cells had their current-interrupt
devices triggered, which rendered them unusable for the Scenario 2 experiments.

.7.4

^7.0

^ £.6.6
u
2.6.2
n
05.8

^94

h
Charge Q

Discharge Q^

90 -

86

82

(a> n
Count

(total .V = 184)

10 20 30 40 50
-1 1 1 r-

<8-

ItEr
u*

Charge Q

Discharge <J

50 100 150
Cycles .v

200

Count
(total .v = 78)

0 5 10 15 20 25 30 35
i—r T—i—r

J I I I L
0 10 20 30 40 50 60 70 80

Cycles v

110

100

90

80

70

Figure 7. Capacity fade of cells in a pack: (a) All new cells; (b) Pre-aged cells with one new cell.

ST8

The cells are matched so as to balance the capacity of the strings. The new pack was successfully
operated for -80 cycles. Its efficiency was reduced compared to the new pack because of the
energy loss associated with balancing of mismatched cells. Our experiments with active cell
balancing showed that some of the efficiency loss can be recovered if an active cell-balancing
technique is employed.

Results
A successful cell-replacement strategy that simulates pack maintenance activity associated with
an early-life cell failure was demonstrated with no significant pack aging difference. A pack of
cells with significant mismatches among cells was built and operated for some time. The
efficiency was reduced compared to matched cells. The reduced efficiency is due to additional
balancing and can be reduced by employing active cell balancing.

Estimation of Cell Capacity and State-of-Charge

Problem
Lithium-ion batteries in high-end applications, such as Electric Vehicles (EVs) and Plug-in
Hybrid Electric Vehicles (PHEVs), are growing in numbers. After serving their useful life in
high-end application, the cells have considerable capacity left (70-80% of the original capacity).
Moreover, many Li-ion batteries in consumer electronic applications also have considerable
remaining life. To reuse Li-ion cells in less-demanding applications, it is crucial to be able to
assess their state-of-charge and age. While the most reliable estimation is cycling a cell from its
fully charged state to its fully discharged state, this process is prohibitively expensive and time-
consuming.

Goal
Investigate methods for quick, cost-effective estimation of Li-ion cell age and state-of-charge.

Approach
Because direct capacity measurements are too expensive, the age of the cells is estimated
indirectly. The two methods considered here are based on extensions to the well-known
correlation between age and resistance: one is based on time-domain analysis; the other is based
on the frequency analysis.

A popular battery model adopted in time-domain analysis is illustrated in Figure 8. The key
parameters are open-circuit voltage Voc, DC resistance /featt, and two parallel RC circuits /?TS-CTS

and /?TL-CTL for modeling transients at different rates.

ST9

VT)
Ccapacity soc

Figure 8. Chen-Mora model2

Time-domain analysis is based on a short-duration step charge (or step discharge). Step charge
and discharge allow model parameter estimation during the discharge process. A single-step test
takes a few minutes (compared to several hours for full charge/discharge). The model parameters
are extracted from the transient waveform of the terminal battery voltage vsatt and current /Ban-
Figure 9a illustrates example parametric fits. The process is repeated for different levels of state-
of-charge and at different ages (number of cycles) for a number of cells, which enables arriving
at empirical curves of the model parameters as a function of state-of-charge and age as illustrated
in Figure 9b.

.,0° -,.0° -.0° ...00 -.0« ..0° ..oo
600 t?

(b) (a) a^l%r 20
Figure 9. (a) Example parameter estimation of five-parameter model, (b) An example parameter Voc estimated for
different state-of-charge and different age (number of cycles).

Once these empirical relationships are available, they can be used for Bayesian inference. Figure
1 Oa shows a posterior bivariate distribution of state-of-charge {SOC) and age (number of cycles
AO after a cell's parameters were estimated from a single-step charge and compared to empirical
parameter curves. Alternatively to Bayesian inference, cell parameters can be used directly to
train a machine learner, such as Boosted Regression Trees (BRTs), to predict the age of a cell
(see Figure 10b).

2 M. Chen and G. Rincon-Mora, "Accurate electrical battery model capable of predicting runtime and I-V
performance," IEEE Transactions on Energy Conversion, pp. 504-511, 2006.

ST10

.«*'„ - 19.0, .V„ - 64,0, SW- 21.0, .V » 62.0
histograms for BR1

-50 0
prediction error

(b)
Figure 10. (a) Bayesian inference ofcellSOC and age. (b) Histogram of prediction error on training, verification,
and all data.

Frequency domain analysis is based on
impedance spectroscopy. Figure 11 shows the
average impedance spectra of new cells and
cells aged to 90% of their original capacity. The
standard aging feature employed in the industry
is the real part of the impedance evaluated at f =
1 kHz, which closely approximates RBatt of
Figure 8. The impedance data shows that more
resolution is available at lower frequencies (1
Hz or less). The higher resolution at lower

frequencies is because the change is ARBatt +

ARTS + ARTL, where at f = 1 kHz, the change
is -ARBatt.

SOC = 100 %

45 50 55 60

SUB.,,,' [ml!)

Figure 11.
Impedance
spectroscopy
of new and
aged cells.

Results
The main outcomes of the study are the approaches for cell age estimation with higher accuracy
and precision than simple correlation with the battery resistance.

Twin Wire Arc Thermal Spray Coating of Metal Power on Steel

Problem
Mechanical systems degrade over time due to wear, corrosion, pitting, and fatigue. Contact
surfaces of military parts with needle-bearing contacts, such as steering boxes or pump shafts,
degrade after extended use in service because of rolling contact fatigue. Once the surface on
which the needle bearings ride begins to degrade, the function of the associated component is at
risk of failure. The effects associated with such a failure can be quick and catastrophic. To
remedy this situation, parts should be inspected and tested during regular maintenance intervals.
Fixing the damaged component typically requires replacement of the failed part.

ST11

Goals
Replacement of a component with rolling contact fatigue can be costly due to the material cost,
labor to make parts with integral surface features, OEM sourcing, and qualification of new
vendors. A better approach would be to remanufacture the component. The goal of this thermal
spray project was to identify a material and set of process parameters that could be used to
remanufacture a sector shaft from a typical large military or commercial vehicle that employees
the R. H. Shepard® steering box or similar component (e.g., on the medium tactical vehicle
replacement [MTVR]3).

Approach
A twin-wire arc remanufacturing method was selected for the remanufacturing of the sector
shaft. Upon selecting the remanufacturing method, an extensive literature search was performed
to determine if methods currently exist for similar thermal spray applications. Preexisting
thermal spray solutions to this problem were not identified; for this reason, a statistical
experiment was performed to identify the main parameters to be applied to this problem:
electrical current level, gun stand-off distance, and air pressure. The study consisted of a twin-
wire arc thermal spray gun applying the coating on plates that were then ground flat. Testing of
many thermal spray samples within a steering box is prohibitive because it is costly, time-
consuming, difficult to control repeatability, and hard to quantify differences in results with real-
time feedback. Therefore, an Instron® test machine was used to simulate the load applied to a
sector shaft from a needle bearing. A fixture was custom designed and fabricated to capture a
needle from a steering box bearing and enabled it to be pressed against the thermal spray samples
at force of 2000 Ibf.

Figure 12. Thermal Spray Fixture and Extemometer

The fixture shown in

Figure 12 incorporates stiff components to minimize displacement during testing to allow for
more accurate measurement of the thermal spray samples. Even with the precautions taken, the

Oshkosh MTVR brochure; Available at: www.wenzlau.com/documents/Oshkosh_MTVR_brochure.pdf
ST12

compliance of the fixture was significant compared to the thermal spray sample and needle roller
interaction. An extensometer was then installed across the halves of the fixture to measure only
the points of interest, thus minimizing the background noise. The load was ramped to full force
over two minutes with the final change in the extensometer equaling the value of interest.

Results

Previous development work showed that increasing the hardness of the thermal spray coating did
not prevent the needle from denting the coating. Instead, the yield strength of the coating needed
to be increased. Two methods were evaluated for improving the yield strength of the thermal
spray coating. The first method consisted of using a Design of Experiments (DOE) to improve
the density of the "as sprayed" coating. The variables in the DOE consisted of air pressure, gun
stand-off distance from component, arc voltage and
amperage. This DOE showed that reducing the stand-off
distance, together with increasing the amperage and air
pressure, at a constant voltage improved the density of the
"as sprayed" coating. However, while increasing the
density of the coating reduced the depth of the dents it did
not eliminate the denting (Figure 13).

Figure 13. Stainless Steel Thermal
Spray Shaft Denting

The second method evaluated incorporated a change to
the composition of the thermal spray coating. A relatively
new material from Praxair Surface Technologies Inc. was
selected for the test samples. This new composition
produced thermal spray coatings that did not show any denting from the needle as detected by
eye; see Figure 14. The parameters identified as the most promising are lower standoff distance
between the plate and spray gun, higher electrical current, and intermediate air pressure. This
development project showed using thermal spray to remanufacture specific steering box sector
shafts can be a feasible and affordable approach.

Distance

i
—-

Cwrent H

Pressure ii. i
Figure 14. Thermal Spray Test Results, Statistical Matrix, and Sample Image.

ST13

Crack Detection in Spur Gears

Introduction
Of four dominant gear failure modes (breakage, wear, pitting, and scoring), breakage is the most
precipitous, which can lead to catastrophic failures. While gear fracture has been studied for
many years, methods to predetermine gear condition remain elusive. This research contributes
additional empirical studies and understanding towards the goal of gear prognostics. To detect a
gear tooth breakage failure in practice, the gearbox is equipped with one or more accelerometers
that sense vibration signals. These vibration signals are processed and condition indicators (CIs)
- acceleration trends and features - are extracted. Several different gear research studies are
described below: enhancing the process of accelerated crack initiation; understanding the
properties of crack propagation under controlled conditions; and statistical analysis of CIs.

Crack Initiation Studies
This work builds on work that was performed under Award No.
W911NF-09-2-0022. The prior work included development of
the test fixtures, development of initial procedures for crack
initiation and propagation, and a first pass at algorithms for
analyzing the cracks. The gears being studied are NASA-
designed spur gears, however, the methods and algorithms may
be applied to other spur gears to identify their crack indicators.
Figure 15 provides the dimensions of the NASA gear.

Figure 15: NASA-designed spur
gears

Problem
Gear service life can be divided into two phases: crack initiation and crack propagation. From the
viewpoint of fracture mechanics, nearly the entire service life of a gear is covered under crack
initiation. The long crack initiation process must be accelerated to allow conducting empirical
studies in a reasonable time. For testing, an initial crack in a gear tooth is made in order to
specify the place where failure will most likely occur and to reduce the amount of time required
for the crack to propagate. The crack must be large enough to verify and small enough to allow
the propagation process to be observed in the early stages when there is time for corrective
actions. Traditionally, cracks are seeded by imparting a notch via wire electrical discharge
machining (EDM). Recently, fatigue-based approaches to accelerated crack initiation have been
considered4'5. Material and manufacturing variations result in cracks that start at different
locations and depths, complicating the identification process. To control the crack size, methods
for initiating and evaluating initiated cracks have to be further perfected.

N. G. Nenadic, J. A. Wodenscheck, M. G. Thurston, and D. G. Lewicki, "Seeding Cracks Using a Fatigue Tester for
Accelerated Gear Tooth Breaking Rotating Machinery, Structural Health Monitoring, Shock and Vibration, Volume 5." vol. 8, T.
Proulx, Ed., ed: Springer New York, 2011, pp. 349-357.

D. B. Stringer, K. E. LaBerge, C. J. Burdick, and B. A. Fields, "Natural Fatigue Crack Initiation and Detection in High Quality
Spur Gears," presented at the 68th American Helicopter Society Annual Forum, FT Worth, TX, 2012.

ST14

Goal
The objective of this study is to improve the resolution of a fatigue-based crack initiation.

Approach
Accelerated crack initiation in a fatigue tester is based on applying cyclical load, above the
normal operating load. Load and displacement measurements are used to extract an initiation-
related CI, also known as a feature. For example, the ratio between displacement and force is

known as compliance, c = Aw / AF. Our original compliance-based feature, Ci, used all load-
displacement data in -100 to -1100 Ibf range. When the load was > 1100 lb, compliance
estimates had more variation as the unloading and loading sides of the fatigue cycle diverged. A
buffer of data was collected and processed by a linear regression function to get a compliance
estimate.

Compliance
Feature

Cl Cl

Min Load
Compression, Ibf

100 200

Max Load
Compression, Ibf

1100 1800

Loading/Unloading both Unloading
Linear regression to
calc compliance

Single
buffer

Sliding
window

Figure 16. Compliance feature enhancements. The '°a2 ■0015 „. , ■0C11 , , "0005

f, r /v Displacement u (in)
table summarizes the main differences. The plot
shows three characteristic cycles of load-
displacement curves.

The resulting enhanced feature, ci, used only data points from the unloading side of the cycle
over the extended range for force (refer to Figure 16). In addition to computing the feature, one
must specify a threshold to stop the propagation of the initiated crack. This threshold is

computed dynamically, and controlled via a user-adjustable parameter, 9, which roughly
specifies the number of standard deviations of local feature distribution tolerated.

Results
Figure 17 shows example crack initiation data and performance comparison between the original
and the new, enhanced feature. The new feature exhibits smaller standard deviation before the
crack starts to grow: cris reduced by -28 % (from ~4.2x 10"2 to ~3.0x 10'2).

ST15

Figure 17. Performance comparison between the
original feature C/ (the red trace) and the new feature
a: (the blue trace).

1200 1400 1600 1800 2000 2200 2400
Tim« t (MC)

Table 1 shows a subset of the series of tests that compared the threshold parameter to the
resulting initiated crack. The threshold parameter, 6, is expressed in terms of a number of

standard deviations (a) of the baseline distribution. The blue traces in the plots indicate the
features, while the red traces indicate the thresholds. The associated images show the tooth side
of the crack surfaces, e.g., the surfaces on the gears from which the teeth broke off. Note that the
crack measurements, indicated in the plots, are the normal projections, not the actual continuous
crack lengths (typically slightly longer). As this subset shows, while the compliance feature has
some general indication of the crack size, the initiated cracks still vary considerably in size and
shape. Some cracks are even discontinuous and initiate at different planes, which is unaccounted
for in the feature.

ST16

Crack Propagation Studies

Problem
After a crack has been detected, the extent of gear damage has to be assessed both at its current
state and, based on certain assumptions on the operating conditions, its expected growth in time.
Crack propagation in a gearbox is difficult to observe directly. The rate of crack propagation in a
gear depends upon operating conditions, but also upon material properties at the micro-scale.

Goal
Our intent was to investigate crack propagation on a number of teeth under well-controlled, fixed
operating conditions to assess the effects of microstructure.

Approach
The fatigue tester employed for accelerated crack propagation was chosen for this propagation
study because of its ability to control the load on the tooth accurately throughout the test. The
anvil applies sinusoidal force in the range of 100-1400 lb at the highest point of single tooth
contact (HPSTC). This is the same setup used for initiating the crack (refer to Figure 18a); the
only differences are lower load levels. All cracks were first initiated using the same fixture and
the compliance feature.

After the crack was initiated and verified, the cracked tooth is equipped with two multi-wire
crack propagation (CP) sensors, one at each gear face (Figure 18b). The number of broken wires
of the CP sensor provides a measure of crack size. Figure 18c illustrates one such propagation:
the blue traces indicate voltage levels of the two CP sensors (the leftj^-axis) and the red traces
(the rights-axis) indicate the estimated tooth crack.

>
'Jt 1

•J

b '' 3
10

Q.10

(a)

- Front (Solid)
,ck (Dashed)

(b)
1000 2000 3000

Number of Cycles

Figure 18. (a) Fatigue tester that applies the load on a single tooth, (b) The tooth is equipped with crack
propagation sensors on each face, (c) Example crack propagation.

o •

0.08 1

0.06 c

0.04 u

0.02 9

4000
(c)

Results
Figure 19 summarizes the results of crack propagation on the fatigue tester. Figure 19a shows a
histogram of the number of cycles spent for 11 different teeth subjected to the same loading
conditions. The histogram employs a log scale on the x-axis to better show the large variance,
spanning over a few orders of magnitude. Figure 19b depicts how the spread narrows as the
crack propagates. Each gear tooth has its distinct marker. The blue markers indicate the "faster

ST17

propagating" CP, and the red the "slower propagating" CP. Note that the scale of the^-axis is
logarithmic. Normal distributions were fitted at each stage, e.g., for a given number of broken
strands on CP, and indicated with blue (faster propagating CP) and red solid line. All
distributions are scaled by the same magnitude to enable their visibility. In the beginning, the
distributions are so flat that the peaks do not show up for the chosen scale. The blue dotted line
connects the means of the "blue distributions" and the shaded area indicates n±a.

The microstructure strongly affects the crack propagation. In a few most dramatic instances, we
observed a crack that starts propagating relatively steadily but then crack propagation seems to
be halted. A better understanding of this phenomenon will be needed to understand uncertainty
in prognostic assessments, or to improve gear prognosis.

I ss'
IO6!.*,

10

SS
5S

I' I i I
i

10 10' 10"
Life remaining [cycles]

10

io:

105

io-'

8 c

' <o i- ■

ll n
" oj

i

I j
1 :-

ll

i in ,5 i
ss
f ■*■ O ID

O) CD
tb c>

(b)

i.

« !
■ - c i

3 4 5 6 7
Number of broken strands

Figure 19. (a) Histogram of cycles for crack propagations on a logarithmic scale, (b) Life remaining in cycles
distributions vs. the crack size as measured on gear faces with crack-propagation sensors.

Feature Analysis and Feature Fusion

Problem

Helicopter gear failures remain a problem for continued force maintenance and safety. One
primary failure mode under study is the presence of gear cracks. Existing methods for in-place
detection of spur gear cracks rely upon the use of Condition Indicators (CIs), which are
thresholded or otherwise analyzed with low-order models to produce a decision. To date, CIs
have not yet been compared and contrasted on a statistically significant data set.

Goals

We produced a novel CI test framework aimed at improving this situation. Our study was aimed
at more reliably quantifying: 1) the ability to detect cracks prior to failure; 2) the ability to
estimate damage levels; and 3) sensitivity to sensor placement. The overall intent was to provide
a holistic study of CI performance as cracks progress from initiation to full spur failure.

ST18

Approach
CIs are computed values originating from accelerometer readings. Thirty-five different CIs are
computed, including Root Mean Square Value, Kurtosis, FMO, NA4, NP4, Autoregressive
Prediction Error Kurtosis, and Auroregressive Prediction Error Sum (Sliding Window). The
Autoregressive CIs were dubbed LP#Kur and LP#Sum where "#" is the order of the predictive
model, given their expansion on Linear Predictive (LP) modeling. All CIs were computed for
four accelerometers placed to simulate opportunistic deployment. CIs were computed over
"bursts" of accelerometer data: 1 second of recording time at 1 kHz. Each CI was computed for
five test gears on data prior to crack initiation ("pre") and onwards to failure ("post"). CI
performance was then evaluated in terms of classification-based crack identification (including
class separability, threshold performance, fusion performance, and augmentation performance)
and regression-based damage estimation.

Results

CI usefulness is bounded by the separability of values from healthy (pre-crack) conditions and
those from damaged gears. We computed distribution statistics (e.g., mean, variance) for each CI
on all gears and accelerometers. From these, we concluded that separability is sufficient for
crack/no-crack classifiers. Further work was built upon this, aimed at finding a best classifier and
its component CIs. Baseline performance was evaluated in (threshold-based) differentiating
between pre-initiation data and early expansion (up to 10% surface propagation); Receiver
Operating Characteristic (ROC) curves are shown in Figure 20. Initial conclusions support the
continued use of NA4 and NP4 as primary CIs, with other CIs used supplementarily.

0 0.1 0.2 0.3 0.4 0.6 0.6
False Alarm Rate

Figure 20. Crack Detection ROC Curves for CIs.

07 0.8 09

ST19

We also studied Logistic Regression and Boosted Regression Tree (BRT) CI fusion, with top
performance occurring when using all CIs and BRT fusion. We then experimented with
Detrended Fluctuation Analysis (DFA) as an augmentation on all CIs that were not based upon
local trending (meaning the exclusion of kurtosis and autoregressive predictive CIs), and then
compared ROC curves via delta (difference before/after) Area Under the Curve (AUC) for the 3
CIs. From our results, we discounted the possibility of DFA as an augmentation for NP4 and
NA4 (poor performance), and performed additional study for FMO. These tests indicated that
DFA should be used as a standard modification of FMO for widespread use, tempered with spot
checks to confirm specific viability (as poorly placed sensors saw no DFA improvement,
although performance was never worse).

For the estimation of damage, we studied the use of a variety of methods, including Linear
Regression, Support Vector Regression, Boosted Regression Trees (BRTs), Regression Hidden
Markov Models (RHMMs), and Deep Belief Networks. We were able to produce accurate
estimates of time-to-death for all gears using both RHMMs and BRTs; see Figure 21 for an
illustration of BRT performance.

; 3000

2000

1000

iiHL Pledicted

r^

kk i i
- *m

1 n Til
2000 3000 4000

Time loaturo originated

Figure 21. Estimating Time-To-Death using Boosted Regression Trees (all CIs).

Ultimately, our experimental framework proved successful in analyzing the performance of CIs
in crack detection and estimation of damage, spanning a number of gears, with top- and side-
mounted sensors and full CI fusion performing the best. Future work will focus on expanding the
scope of the study to confirm statistical relevance and better differentiate between sensor
placements.

Reverse Engineering: 3D Laser Scanning and CMM Integration

Problem

As noted earlier, as complex military systems age, it becomes increasing difficult to obtain
components for these legacy systems because OEMs have stopped producing the component or
have ceased operations. In addition, when the military purchase a system they often do not
purchase the complete technical package; as a result they do not have prints for the components.
For this reason, there is a need to recreate the prints for these legacy components. One option is

ST20

3D laser scanning, which uses laser technology to produce detailed three-dimensional images of
complex environments and geometries in only a few minutes. However, 3D laser scanning
cannot capture high-precision surfaces.

Goals
The objective of this project was to develop and demonstrate a methodology for generating a 3D
model of a complex component consisting of cast and machined surfaces using a 3D laser
scanning system to capture the overall geometry of the component and then integrate the higher-
precision surfaces and features of machined surfaces, obtained by a Coordinate Measuring
Machine or other similar systems, into the point cloud.

Approach
The methodology developed consisted of first scanning the component using the 3D laser
scanner using a scanner-arm combination that has an accuracy of+/-.051 mm (+/- .002 inches),
which is sufficiently precise for measuring "as cast"
surfaces. This probe-arm combination was also used to
provide point registration for accurately merging separate
scan files.

The actual process of scanning is similar to spray painting.
The operator must slowly sweep the laser over all surfaces
to collect point data. Figure 22 shows a point cloud
generated by the 3D laser scanner.

Next, the coordinate measuring machine (CMM) was used
to measure and capture the machined surfaces. The CMM
uses a physical contact probe that records single-point data
and provides measurement accuracy of+/- .005 mm (+/- .0002 inches). The CMM was also used
for computing the dimensional relationships between measured features on a part, enabling the
accurate dimensioning of physical relationships such as the holes angle and bolt holes pattern. In
addition, other systems with similar or greater accuracies as the CMM, such as an optical
gauging system or handheld measuring devices, also can be used to capture these surfaces.

Results
The laser scanning data was collected through the scanning-arm and probe-arm system by the
Kube software program. This program was used for the point collection and initial point
processing and was able to merge all the individual laser scans. However, Kube cannot take the
data all the way to a solid model or a CAD software package.

Two approaches were used to transfer the point cloud data from Kube to a CAD software
package. One was the curves approach, which uses Planar and Radial B-spline curves created
when a defined datum's planes intersect collected points. Theses curves are then imported into
CAD software for reference for developing a dimensional, 3D representation of the component.

Figure 22 Point cloud of the top surface of a
transmission tailpiece.

ST21

Once this is complete, Geomagic Studio software was used to repair gaps in the scanned data and
smooth the surfaces creating watertight surfaces. These surfaces were then used to create a
NURBS (non-uniform rational B-spline) solid. The NURBS file was then used to produce the
solid model. However, the model produced would not allow the production of a clean drafting
file of the tailpiece. This issue is being worked out by the software suppliers.

In the second approach, Geomagic was used to qualify the accuracy of the 3D graphical
comparison between digital reference models using scans and probes of as built parts. Final
mechanical drawings were then created from the CAD-generated surfaces and features.

Figure 23. Completed NURBS model showing various views and model detail.

Conclusions

A methodology was developed and demonstrated to create an accurate CAD solid model of
machined and non-machined contoured surfaces using a combination of 3D laser scanning and
CMM measurements. It was demonstrated that this method, together with scanning a sufficient
number of samples of the OEM component, would provide enough data to establish average
dimensions and tolerances for the machined surfaces.

ST22

The outcome of the methodology development not only demonstrated a procedure but produced
an accurate solid model that could be provided to a casting manufacturer. From the solid model
the casting manufacturer was able to generate a mold design for casting the component.

LAV Fuel Efficiency Testing

Problem

The U.S. Marines were asked to try a fuel catalyst in their Light Armored Vehicles (LAVs). The
catalyst was claimed to increase fuel efficiency by 12-23% and to decrease exhaust emissions by
up to 82%. When the product was used in LAVs, operators observed increased engine exhaust
temperature.

CIMS at RIT was asked to test the claims of a fuel catalyst manufacturer and monitor exhaust
gas temperature to verify the Marines' observations.

Goals

1. Compare the efficiency, emissions, and exhaust temperature of a diesel engine operating
with and without QuantumFire™ Fuel Catalyst.

2. Test the Marines' observations of increased exhaust temperature while operating with the
catalyst.

Approach
CIMS' 350 HP Mustang Eddy Current engine dynamometer is housed in an Engine
Dynamometer Lab. Also housed in the lab are an ECOM 5-gas exhaust analyzer, a precision fuel
metering station, an lotech Daqbook 2001 data acquisition system with thermocouple,
transducer, frequency and digital inputs. A Cummins ISC-240 turbocharged, intercooled,
common-rail injected engine capable of 240 hp and 660 If5 ft of torque was coupled to the
dynamometer and used to perform the requested tests.

Fuel efficiency, exhaust emissions and exhaust temperature measurements were made at four
steady-state conditions as shown in Table 2 and represent a full range of engine operating
conditions.

Table 2. Engine Test Point Settings.

Bin # Torque (lb*ft) Speed (RPM)
1 165 2110
2 330 1370
3 330 2110
4 495 1740

ST23

The engine was operated on untreated ultra-low sulfur diesel (ULSD) as a baseline test. It had
also been run on this fuel as part of a 1700-hour study. Using the baseline test and the previous
study test data, baseline fuel efficiency, emissions, and exhaust temperatures were recorded.

The four steady-state test points were repeated with ULSD treated with QuantumFire™ catalyst.
John Dabels at QuantumFire, Inc., advised that the proper mix ratio is 1 part pre-mixed catalyst
to 400 parts fuel. The fuel was prepared at that ratio. Measurements were made immediately and
after every eight hours (approximately 30 gallons) of operation. The process was repeated until
96 hours of operation were completed and 130 gallons of fuel were consumed. After the treated
fuel runs were complete, four 8-hour test segments were run on pure ULSD fuel with no catalyst.

Results
The measurements were tabulated and analyzed using Analysis of Variance (ANOVA)
calculations in MiniTab™ statistical software. The ANOVA failed to discriminate the efficiency
effect of the catalyst from random error. Figure 24 shows that the fuel catalyst effect is nearly
non-existent compared to the engine loading conditions.

Main Effects Plot for Efficlency(°/o)
Fitted Means

Fuel Sins

A /
/ v

Figure 24. ANOVA results for efficiency.

32-

Scatterplot of EffldencyCVo) vs RunOrder

2.9% Increase

1.2% Increase

♦ ♦-►
«.♦♦♦-♦♦♦♦♦♦♦♦♦ ♦2.1%

2.7%

Increase

Increase

CfUalysWise 20 30 40 50 \ 60 70 80
started here RunOrder Return t0 untreateci fue|

Figure 25. Run Order Trend of Efficiency.

Even though the statistical evaluation showed no significant effect, a plot of efficiency over time
was analyzed. The time or Run Order Plot shown in Figure 25 indicates a gradual increase in
efficiency over time that stabilizes after approximately 32 hours of operation. The average
normalized efficiency change is 2.3% and varies with engine operating conditions.

Likewise, the exhaust temperature, throttle position, and emissions measurements were analyzed
statistically and graphically. Table 3 contains a summary of the experiment results.

Table 3. Summary of catalyst test results.

Factor ANOVA Graphical Analysis
Efficiency Not Significant Slight improvement with catalyst
Throttle Position Small reduction with

catalyst
No visible change

CO Slight increase with Inconclusive - too much random

ST24

catalyst error
NO Slight reduction with

catalyst
Trend down then up with catalyst

N02 Strong increase with
catalyst

Large increase trend with catalyst

Exhaust
temperature

No Change No Change

In summary, the catalyst appears to have produced a 2.3% efficiency improvement. No
detectable changes to CO or NO were observed. A significant increase in N02 was observed
while using the catalyst and a possible small decrease in throttle position was observed.

ST25

Platform Lifecycle
Decision Support

But Fled «

701-708 iGtUG-2004)

Vatvts 1 Swtch

Af Solenori Valve

Air SotoMMdVtfMf

OMnlOBdAbon Poor

nfywc^dMCnplors Water 5M(M«

UCMMWWf

FiNlLuhave

ExctWHwCaf

5. Platform Life-Cycle Decision Support

5.1. Description of Platform Life-Cycle Decision Support

Platform Life-Cycle Decision Support (PLDS) is a set of processes and tools to aid in

platform engineering decisions during the design, development, fielding, sustainment,

and disposal phase of the platform life cycle. In particular, we are focused on research

that facilitates cost-effective platform upgrades that allow the platform to adapt to

changing operational needs and to utilize evolving technologies throughout its life

cycle. With respect to modernization, the research focus will be on evaluating the

impact and timing of technology upgrades (tech insertion planning).

The U.S. military ground and air vehicle fleet is composed of many aged platforms, some of

which are well past their original design life. These older vehicles, together with newer vehicles,

have undergone vastly accelerated aging over the last decade or more of military activity in Iraq
and Afghanistan. Environmental factors such as heat, sand, and dust, in addition to operating

these vehicles at a pace well in excess of normal peacetime service, has severely reduced their

platforms' remaining life. The advanced use and extended service life of many military platforms
requires the ability to effectively evaluate individual vehicles and fleets of platforms for repair,
overhaul, technology upgrade, and/or replacement. PLDS tools are designed to provide aid in

evaluating the operational effectiveness, reliability, and affordability of platforms, allowing
Program Managers to better align their funding requests with related program strategies that will
sustain, modernize, or replace existing legacy equipment systems.

5.2. Platform Life-Cycle Decision Support Research Objectives, Progress,
and Results

A major of objective of the Platform Life-Cycle Decision Support program is to determine what

tools need to be provided to assist in making informed decisions over the course of a platform's
life. Tools will be designed to target specific users, providing the information necessary to make

decisions applicable to that user only. For example, a Program Manager may be interested in
evaluating the increased effectiveness of a platform after a specific upgrade has been performed;

but a Maintenance Manager is more concerned with the effectiveness of certain diagnostic

procedures for identifying a particular failure. So as a first step toward implementing decision
support systems, CIMS identified the users of the Lifecycle Engineering and Economics

Decisions Support (LEEDS) system and the functionality that each user would utilize.

CIMS also performed an evaluation of the available technologies for the implementation of
LEEDS in order to identify which one should be utilized. The existing LEEDS system was

limited in its capabilities due to age, and was slowly becoming obsolete due to the increased

PLDS1

utilization of mobile devices. The objective of the evaluation was to identify features that the
new implementation of LEEDS would require, such as the ability to display on a tablet or

smartphone. Utilizing these features, an analysis of the available technologies was made to

identify what technology should be chosen for the next implementation. It was determined that
two technologies. Portals and Google Web Toolkit (GWT), were viable for meeting the
implementation requirements.

The next step toward evaluation of the implementation technologies was to perform some initial
development of basic features of LEEDS, such as the vehicle component hierarchical trees,

mechanical drawing retrieval and display, and platform usage viewing. For the implementation,
CIMS chose LifeRay Portal and Icefaces JavaServer Faces after an evaluation of the available
portal technologies. The initial demonstration of LEEDS implemented using LifeRay allowed

LEEDS to be utilized in all of the major browsers; in addition, users may configure the portlets
to suit their needs and utilize roles to control what portlets different users may access.

An additional development activity was undertaken utilizing Google Web Toolkit (GWT). For

this activity, a demonstration of a new maintenance decision support tool was developed. The
system was designed to provide a library of solutions to maintenance problems based on the

problem indicators on a platform. Through a case-based reasoning engine, a maintainer can enter

a series of indicators to a problem, e.g., black exhaust smoke and lack of power, and be provided
a number of solutions ranked based on their previous success at correcting the problem. This

demonstration system was built as a module that could be integrated into LEEDS. GWT allowed
the demonstration to be a highly user-interactive desktop application.

Also under the contract, CIMS evaluated two openly available Configuration Management

systems. Since the current version of LEEDS software is designed around a custom CM system,
and in the future we will be adding more functionality that will utilize and need to integrate with

other CM systems, it was decided to look at a more fully-featured CM system. This analysis

focused on the EIA-8361 CM Data Exchange and Interoperability standard and MIMOSA. After
comparing the capabilities of each system with the needs of LEEDS and evaluating the ease of

implementation, MIMOSA was chosen to be the next CM system for LEEDS.

5.3. Platform Life-Cycle Decision Support Projects

The following projects were conducted during this contract period under the LEEDS® program:

Projects:

• Analysis of Users and Applications for LEEDS

• Analysis of Technologies for Next Generation LEEDS

• Implementation of LEEDS in a Portal-based environment

1 https://acc.dau.mil/CommunityBrowser.aspx?id=32229

PLDS2

Platform Lifecycle
Decision Support

PROJECTS

• Development of a Demonstration Maintenance Decision Support Module for LEEDS

Analysis of available data models, e.g., MIMOSA & EIA-836A.

Platform Life-Cycle Decision Support Projects

Analysis of Users and Applications for LEEDS

Problem
LEEDS is a web application that provides the following core functionality:

• A mechanism to construct an asset hierarchy that displays the asset, its subsystems and
component parts.

• Resources can be associated with each level in the hierarchy. Resources include technical
manuals, drawings, images and more.

Figure 1 shows the LEEDS asset hierarchy (System Tree) displaying an image of the selected
component, the engine.

File View Tools Help Session Timeout: 18:49

HYbnd Smrf Watorplant
/to Craft MAINTENANCE

721-739 (GILLIG -I

801-822 (GILLIG -J

801

802

Pressure Regula *

Purge Tank

Valves & Switch

Brake System

Drivetram System E

Driveline Assemt

Coolant Filter

Engine1

-- Engine Oil Filler'

Engine Oil Press

Fan Control Valv

Hydraulic Fan Mc

Hydraulic Oil Coc -

LQUIPMEHT

Description Specificati
MONITORING RECAPITALIZATION

r View Change History

...
i^aj-..i»,.,ijjmgg!g;iuB!!!i^^

Figure I: LEEDS Asset Hierarchy.

Initially, the next evolution of LEEDS was planning to focus on asset and fleet decision support.
For example, LEEDS could provide support for economic decisions, such as repairing vs.

replacing parts, or when to retire existing fleet vehicles and purchase new ones. However, in

PLDS3

order to be thorough, an analysis of the planned users and their required functionality must be
undertaken. This effort will be the guiding requirements for implementation of future

functionality for LEEDS.

Goals
The end result of the analysis is to enumerate the expected users of LEEDS, together with a list

of the applications they would use. Utilizing the list, applications may be prioritized, and use-

case scenarios may be developed for each class of user, which in turn, will drive our
requirements for the LEEDS system. For the purposes of this exercise, the candidate users will
be drawn from duties typical of a vehicle Program Manager's office, such as fleet or operations
management, engineering and research; or from the unit level, such as operators or maintainers.

Approach

In order to derive a list of LEEDS users and applications, we held brainstorming sessions and

collaboratively updated internal documentation. Members included those with knowledge of
fleet and operations management, asset operation, asset maintenance, research, engineering,

software and database development. Raw material we had to work with included:

• Existing LEEDS requirements.
• Existing LEEDS demonstration applications.
• Existing in-house applications with relevance to LEEDS.

The brainstorming sessions generated "user stories," which are scenarios describing tasks that a

particular user would perform. From the user stories we were able to assign roles to various
tasks, as well as identify application features that users would make use of. This led to:

• A list of user categories.
• A list of potential applications and their features.
• A list of enhancements to existing in-house applications.

Results
The major functions that an augmented LEEDS should support are:

• Equipment and technical data configuration management.
• Fleet operations status; e.g., deployment and location information.
• Asset service life decision support.
• Fleet life cycle decision support: investment planning.
• Logistics planning; e.g., parts sourcing and supply.
• Stakeholder communication and information exchange.
• Engineering change order support.

This functionality would be utilized by the following list of primary users:

• Operator
• Asset Maintainer

PLDS4

• Asset Subject Matter Expert (SME)
• Procurement SME
• Researcher
• Operations Manager
• Maintenance Manager
• Fleet Manager

A list of secondary users includes:

System Administrator: administers the LEEDS system
Applications Engineers and Software Developers: develops extensions to LEEDS

• Data Warehouse Administrator
• ETL tools, data generators, report generators (third-party tools that interact with LEEDS)

The following sections define the major applications that LEEDS would provide, together with
the users of each application.

Maintainer User Interface

The Maintainer User Interface associates maintenance and tracking information with assets. This
allows users to view a variety of asset information from a single location. A sample use case
would be:

An operator brings a vehicle in for maintenance. The Maintainer accesses the asset
using the Maintainer User Interface, views the maintenance history, finds that the

faulty part has been fixed before, decides to replace it, looks up parts availability, and
schedules the asset for repair.

Features:

Retrieve and view technical publications.
View real-time and historical vehicle data, analyze and diagnose asset issues.
Compare asset performance to fleet performance.
Initiate, document, and close maintenance service requests and record results.
Provide information on parts availability.
View asset maintenance history.
View prognostic indicators.
Update vehicle configuration information.
Maintenance scheduling.

Use: s:

Maintainers
Asset SMEs
Researchers

PLDS5

Fleet Maintenance User Interface

The Fleet Maintenance User Interface provides a Fleet Maintenance Manager with a view of the

fleet. Statistics are available at the fleet level, for groups of vehicles, and for individual vehicles.
A sample use case would be:

A Fleet Maintenance Manager views the maintenance history for an asset that has

been recently serviced. A part was replaced, and it showed unusual wear. The

manager identifies all assets that have the same part installed, and schedules them for
inspection.

The Maintainer User Interface would be accessible from the Fleet Maintenance User Interface in
order to provide maintenance information to the fleet maintenance manager.

Features:

Fleet benchmarking, trending and problem reporting.
Management of technical publications.
Analysis of fleet-wide maintenance issues.
View vehicle data for analysis and diagnosis.
Manage the archiving of vehicle data.
Provide information on parts availability.
Initiate maintenance service requests.
Develop condition-based maintenance (CBM) plans.

Users:

Asset SMEs
Procurement SMEs
Maintenance Managers
Fleet Managers

Researcher's User Interface

The Researcher's User Interface presents information used in asset research. For example, for
vehicle assets the user interface would allow the researcher(s) to view and manipulate sensor
data. A sample use case would be:

A Researcher is interested in reducing vehicle fuel usage. They choose a vehicle using

the Fleet User Interface and download sensor data from that vehicle. A graphing tool
allows them to view, for example, the sensor data, the RPM or shifting data. The

sensor data can be used to design algorithms that identify shift patterns that may
reduce fuel usage.

Features:

• Fleet benchmarking, trending and problem reporting.
• Maintenance of technical publications.
• Analysis of fleet-wide maintenance issues.

PLDS6

View vehicle data for analysis and diagnosis.
Download asset data to local database for cleansing, manipulation, and simulation.
Receive notifications when new asset data has been uploaded to the database.
Provide information for algorithm development.

Users:

• Researchers

Node Maintenance Tool

The Node Maintenance Tool is used to manage the software and resources of an on-board
system.

Features:

• Update software and firmware for the on-board health monitoring system.
• Configuration and control of the health monitoring system.
• Collect health monitoring system log files.

Users:

• Maintainers

Developer's Analysis Tool

The Developer's Analysis Tool supports software and system developers to design and debug the
health monitoring software and on-board system.

Features:

• View health monitoring system log files.
• View standard usage reports.
• View standard error reports.

Users:

• Applications Engineers and Software Developers

Fleet Operations User Interface

The Fleet Operations User Interface provides many of the same views of the fleet as the Fleet
Maintenance User interface and adds operation planning and tracking information.

Features:

• Interactive map displaying asset locations, speed, heading, routes (planned and actual).
• Display asset readiness (status, cargo, health, fuel, performance, task assignments, and

adherence).
• Access to positional, logistic, and fault data.
• Asset task and route planning.
• Exception reporting for assets operating outside a planned task/route.

Users: , . . .

PLDS7

•

•

Operators
Fleet Managers
Operations Managers

• Maintenance Managers

Remote (On/Off-Board) Operator's Display
The Remote Operator's Display provides asset and mission planning and tracking information.

Features:

• Manage inspection checklist.
• Automatically populate current health data.
• Provide current health and logistics data.
• Auditory input and feedback.
• Input logistics data through cargo scanning.

Users:

• Operators

Reliability Centered Maintenance (RCM) Tool

The Reliability Centered Maintenance Tool supports the use of condition metrics in order to
maintain assets before they encounter a failure.

Features:

• Support moni toring o f as sets.
• Scheduling of maintenance.
• Provide engineering support.

Perform failure mode analysis. •

Users:

SMEs

Analysis of Technologies for Next Generation LEEDS

Problem

LEEDS was first developed in the year 2000 as a standalone MS Access database. In 2003 a

conversion to a web-based application established the current architecture. LEEDS has had many

incremental functional additions and improvements over time, but the original 'look' and

underlying architecture design is still in place. The key problem with the existing implementation

of LEEDS was it was outdated in terms of architecture and appearance. Specifically:

• LEEDS was designed for Internet Explorer 6, was not compatible with more recent

versions of Internet Explorer, and was not compatible with any other browsers. This
places restrictions on LEEDS users.

PLDS8

LEEDS used an older technique for database interactions. Newer frameworks, such as

LINQ, support a wider range of database sources and provide more flexible

programming.

The LEEDS user interface was HTML Frame-based that has fixed areas for features;

contemporary design uses a more fluid layout viewable on a wider range of devices.

1
es.......

^?^ ^^B--=l "' -■■"- -

' vw e.ttceam

■

. mum*™, ims.

. v ,.r H .. am
■ ■

■««-i». - V mM~
w.,^ b*.*^*^. v-u-i. KM ,„« ».«-*. (M«V«W I*

■ . , •! IMMMIN

—Pirn ■rn^sSMCP
ft 5->»M---,I:,*M rvn LMM ox-
• MOntlKrMI TO SM ■■rwniB UWMMM

m+t* 9 UBa»»HK*M v twi M»rt (Mu«

.StT • «^«a»tn«PH w tm cm (*-««- ■.■':- .1 «rw
0 ii-t/w^ *■«,»■*! «;, fettMM •«■ 1 - . M ■ MM M

■ -. ',,-n. • «,<ba»i»»i>M m ttidt -;■ ^jca^<i- Kcmr
O sr*am..-«t«. JW a* ore> *."*££.JO F«T«-
• vv7miiua.«M (ri s^ onn <WT*3S>5*eii HWW

E^otf^rtB 0 mantiitMOM ^ E^AH D»W •rrr *.'7a-jcr m:n»

.^^M,
OtwvNaSM n**^--^.^ •
#MtaM Mwix Ennr
At^i- l*™^.. - »«.- . ..

' -^ j

Figure 2. Existing LEEDS showing the use of fixed frames.

Goals
Evaluate current and emerging technologies as candidates for the implementation of a new
LEEDS. These technologies target:

• Web and desktop application development frameworks.

• Web server alternatives.

• Database technologies.

• Communication protocols.

Approach
At the time of this exploration, the "Semantic Web" and personalization were beginning to
reshape the world-wide web. At the same time, numerous frameworks were being developed to

support development of new web applications. The development of LEEDS for the Semantic

Web would lead us to evaluate a number of technologies, with the following considerations:

• The technologies could address our current LEEDS requirements and be flexible enough
to address new LEEDS requirements.

• The technologies must be robust and scalable.

• The technologies should be relatively familiar for our typical developer base.

Figure 3 provides an illustration of the variety of technologies available for client applications.

PLDS9

MfHwriteJ V^lfcB—■flhiy ! IfeFox-itahwj* ' ' .UAeFlei^ : XETSShaliil': EftKBCj (.AfpFnowrcrty Jtfagm*.

.1 1 I_.I1U.< JMSWJK,: vNaUTF ' ^yeV^Fnuis; . LoallaallnJ ^aVriiSWHSaKtCDcf

Figure 3. Client technology alternatives decision tree.

Desktop Applications
We investigated the following desktop technologies:

• Java Swing - Java-based user interface technology.

• .Net Windows Presentation Foundation (WPF) - latest Microsoft user interface
framework.

• .Net Win Forms - traditional Microsoft user interface framework.

There are issues involving the deployment of desktop applications:

• Installation is required on a client machine, often with platform-specific considerations.

• Users decide when to acquire and install updates so several versions of the application
can be found in the field, requiring developers to maintain multiple versions at the same
time.

Two technologies were investigated in order to alleviate the limitations with deployment of

desktop applications. These technologies support launching applications from the internet rather

than downloading and installing the applications to keep all versions up to date. These
technologies were:

• Java Web Start

• Microsoft ClickOnce

Rich Internet Applications (RIAs)

RIAs are web applications that share many characteristics with desktop applications. They run

faster and are more interactive than traditional HTML-based web pages. Some of the RIA
frameworks we investigated were:

• Adobe Flash and Adobe Flex

• .Net Silverlight

• JavaFX

PLDS10

However, RIAs also share a limitation with desktop applications - deployment. In the case of

RIAs, it is not the application that needs to be deployed and updated but rather a browser plug-in

that runs the application. The user must install the browser plug-ins prior to using the

application, and often to every browser they use.

Web Application Frameworks

The majority of the evaluation was spent on client technologies, specifically web-based
frameworks. Web applications have the following advantages over desktop applications and
RIAs:

• No installation necessary; clients simply navigate the application in a browser.

• Web applications are updated on the server, so clients are all using the same and the latest
version.

• User interface controls have caught up to the level offered by RIAs.

• By running in a browser they are "sandboxed," which prevents them from negatively
affecting the client machine.

One requirement we placed on the web application frameworks was that they must support
Asynchronous JavaScript and XML (AJAX or Ajax). Ajax is a technique for communicating

with a server without interfering with the current display. This makes for highly interactive web

pages that do not require full page refreshes, making them appear more like desktop applications
and RIAs.

We investigated the following web application frameworks:

• ASP.NET, and ASP.NET MVC (Model-View-Controller version of ASP.NET)

• Ruby on Rails

• Google Web Toolkit (GWT) - Java framework for creating Ajax applications

• Java Enterprise Edition and JavaServer Faces

• PHP - Scripting language embedded in HTML

Database and Communication Protocols
The analysis of database technologies and communication protocols was extensive enough to be

moved to its own area named "GLEAM," which is covered in another section of this report.

Results
We favored Java-based web applications because of our extensive Java experience, and because

web applications solve the deployment problems mentioned above. We also used client
frameworks with extensive libraries of user interface components.

We developed two proof-of-concept applications: one used Portal technology; the other used
GWT.

PLDS11

A Portal is a browser application that hosts small, self-contained applications called "portlets."
The portlets can be arranged by the user and are able to communicate with one another.

The Portal provided the following features:

• Built in Ajax support.

• User personalization support and theme support.

• Extensive component library provided by JavaServer Faces.
• Ability to incorporate third-party portal applications.

An advantage of developing a portal-based application is that the individual portlets can be
developed separately and "pulled" into the portal seamlessly. Unlike a web application, it is not

necessary to modify the overall application to incorporate new features.

The GWT implementation also made use of built-in Ajax support and provided an extensive
library of user interface components, including drag-and-drop. An additional benefit of GWT is

that the application is written in Java and then translated into JavaScript for the browser.

We found that GWT is very useful in developing highly interactive, desktop-like applications for
the browser.

Implementation of LEEDS in Portal Environment

Problem
The implementation of LEEDS in a portal environment grew out of our investigation of

technologies for improving LEEDS covered in a previous section of this document entitled,
Analysis of Technologies for Next Generation LEEDS.

Life Cycle Engineering and Economic Decision Support System (LEEDS) web application

is/was designed to assist in making economic decisions directed at maintaining assets. Some of
the answers it seeks to provide are:

• Is it more economical to repair or replace a component?

• Is it more economical to remanufacture an existing asset, or to purchase a new asset?

The LEEDS application draws information from a database of asset characteristics and analysis

data. During the decision-making process, new information is added and existing information is
updated.

The existing LEEDS application has several shortcomings:

• Only compatible with an older version of Microsoft Internet Explorer.

• Pages do not support user configuration.

• Adding new features means modifying the entire application.

PLDS12

• All of the content (drawings, manuals, images, video) are kept in the database.

• Appearance is dated.

Goals
Develop a LEEDS application with consideration given to the following software characteristics:

Interoperability - Functional in a variety of browsers, on a variety of operating systems.

Scalability - Functions independently of the size of the database.

Usability - Ease of understanding, use of common presentation controls.

Extensibility - Ability to add features without modifying the system.

Modularity - Software broken down into reusable functional units.

Security - User authentication and user groups.

Performance - Provides timely responses.

Approach

As explained above, a Portal is a web application that hosts "'mini-applications" called "portlets."

Each portlet serves a particular function; however, portlets are able to communicate with each
other as well. The combination of individual portlets leads to a cohesive portal application. A

portal application addresses our goals in the following ways:

• Compatible with all major browsers (interoperable).

• Users are free to configure their pages to suit their needs (usability, extensibility).

• Portal application is easily updated by simply dragging new portlets into the portal. This

includes the ability to use third-party portlets such as email and calendar portlets
(extensibility).

• Integrated Content Management System (CMS) provides uniform access to content,

together with support for collaboration and versioning (scalability).

• Theme support allows the user to customize their environment and brand an

implementation of LEEDS for a particular industry or purpose (usability, extensibility).

• Management of user roles and groups, providing controlled access to portlets based on
roles (security).

• Developers can work on separate portlets without interfering with each other, and
integration into the portal application is managed by the portal, so there is no need for

additional code to tie a portlet into the overall application (modularity).

• The portlets access their data source and update their views without the need for full-page
refreshes (performance).

Results

After evaluating various portal applications and component libraries, we decided on the LifeRay

Portal (www.liferav.com) and the Icefaces JavaServer Faces implementation (www.icesoft.com).
The reasons for choosing these were:

PLDS13

• Offered free community editions.

• Feature rich.

• Well documented compared to other options.

Approximately 50% of the existing LEEDS technology was fully implemented in the portal
application at the time we concluded the proof-of-concept. A screen shot can be seen in Figure 4.

In addition to replicating a number of LEEDS functions, we also made the following
enhancements:

• Implemented several user configurable themes and layouts.

• Offered a variety of user interface components that the user is free to choose from; e.g.,

navigation through an expandable tree or using a more compact menu component.

• Defined user groups that controlled access to portlets based on role. For example, a
Maintainer would have a different view of the application than a Fleet Manager.

PLDS14

C rt Clocalhost i ■ mce 1^ D ^.

Cj App< Qj Radio CD Schoor LJ SW Qj Google '2_ Soc 2_ News Qj Shop Qj Sports Cj Ent Cl Morning Q] crargslirt Q Play Qj Ref l2_l Jobs *' M Other bockr^arks

Maintenance Momtonng Recaptaizabon

-♦ Bus Om/t -* im-JOS (Cll 1 tG - 70041 >* 708
!0-l.<-:-."-'-ll:f!,S"Ey7T3 ^yfCff Unique kt 6176 I

Bus Fleet [V

701-708(011110-2004, H
70E -

Ar System. Kneelar QB
Vah'esS Switch B||
Air Solenoid Valve 1 r

dZHHi^HH
Air Solenoid Valve 1

Overs! ccndttpn: Poor

Pl-ysical descnptors: Water Seepage

Excessr/e Wear

Fuel Leakage

Excesiwe Corroion

Uotes.
ShcjU be recls:ed as &con at next inspectlcn.

Overall Condilior; p^ i i

PhysicrtDescnpto^s): Water5eepag, ^]

Excessrve Vnear ^J

Fuel Leakage ▼_

Excessive Corrosion <r |

Moles- SbouM be replace; at rexl nspection

Air Solenoid Valve 1

Failure Mode^ Cause

Url does not

start LD "CPCWer

Audio aert Is

rot heard by Bed ceDInu

operato-s

DetectlDn Det Scv Frea RPN

DfKer cannot ^^ ^pectisn, snd

No elerl buzr ever

rtefcom or crew headsets

• b the Reief VaKe Disdiarge
Sump filings ff VES. condjet

-.■drai J: Pire has f,i if-

i Represents

65% ot

occurrences)

(Rep-eients
aswof
occurrenceai

Audio aer: is Connectors ccnslan; alert buzz cicr

constantly External Alarm rtcrcom cr crew head»-e1s

heard by Output pm has a rdependent cf an adr.e

cpeiBloe bad FET. slerl.

view EPLS data

Driver does rot

have audible

nctiflcation ct

new oleri.

Driver has

annoymc
bu:zer ncise

check with dioitai .clt 1

VfeLaiin&oeciicir ana

check with dioital .clt 1
meter

Check pm vcltactE iceis

with digital .ch meter

when rurnrg aurfictest

or display

Air Solenoid Valve 1

SVanan^Cate 10/02/10
Actual Houre: 410 7

Title P-rcrrrt.. Scheduled Diite
Check Hydraulic Fluid Level

Engine

Hcses - Clames Inspection 5CC hrs

Psstttue 160.7 hrs

Due in B&.;. hrs

Due in 39.2'his

Alternator Irsoectlcn Annualtv Ofinim

Figure 4. Screen shot of a portal page showing several portlets.

Development of a Demonstration Maintenance Decision Support Module for
LEEDS

Problem

A common problem in maintenance facilities is the retention of experiential knowledge by

specific employees. It is not uncommon for an employee to be known as the only person who can

f:x a certain type of problem. Often it is not the case that the person is a better maintainer; j ast

that he has had more experience with that type of problem and the necessary maintenance

procedures to alleviate the problem. The challenge is how to capture this knowledge and make it

PLDS15

available to all of the maintenance personnel so that certain problems do not have to wait for "the
expert."

Goals

The goal of the Maintenance Decision Support Module for LEEDS project is to develop a
demonstration of a maintenance-decisions-support module that captures the knowledge gained

through experience and makes that knowledge available to other maintenance personnel. The

system provides a Case Based Reasoning (CBR) system to provide suggestions for maintenance
based on previous solutions to problems. Thus, when a user asks for a suggestion on how to

solve a problem with a set of indicators the system will output a set of potential solutions
together with a rating as to how well that solution fits the existing problem. The user may then

elect to perform one of the suggested procedures to address the problem. Upon completion of a

successful solution to a problem, the system will be provided with the necessary information to
update the CBR system. Figure 5 provides a high-level representation of such a system.

Approach

Asset ID
Date

Problem
Maintenance Completed

Notes

CMMS System

Asset ID
Raw Data
Alert Data
DTC Data

Usage Data

Asset Health Data

Asset ID
Date

Indicators
Corrective Actions

Root Cause
Notes

CBR Maintenance
Support System

Figure 5. Maintenance Decision Support.

Existing Computerized Maintenance Management Systems (CMMS) capture data related to the

platform, the problem being reported, as well as the parts and labor that went into the repair.

However, the data is typically not as simple as problem —* solution. For example, a repair order

may consist of a transmission problem but the work performed may include an oil change

PLDS16

because it happened to be due. There is no correlation between the problem and the oil change
although they appear together on the same work order.

For the decisions-support system to be effective, we needed to capture problem indicators,

maintenance actions applicable to the indicators, the failure mode, and if the problem was
resolved. Utilizing this data, a case-based reasoning engine was created that examines the

problem indicators and matches them to previous cases that resolved the problems.

To design the system, the users were identified as the maintainer and the subject matter expert
(SME). Utilizing these roles, simplified use cases were developed to show the steps that would

need to be taken between the users and the software. The maintainer is responsible for asking for

assistance from the system. The SME retrieves the problem reports (observed conditions from
the repair order or alerts and Diagnostic Trouble Codes [DTCs] from a platform-monitoring

system), identifies the appropriate corrective actions from the repair order, creates the cases,
assigns the failure modes, and closes the cases as having been resolved. As the collection of
closed cases grows, the system will be able to better identify the corrective actions required

through a matching algorithm utilizing the problem indicators.

Results
Initial demonstration software was developed utilizing Google Web Toolkit. Without a CMMS

system to mate the software to, a page was developed for creating and populating Work Orders.
Additionally, Alerts and DTCs may be created for demonstration purposes. The SME will work

from completed Work Orders as a way of populating the system with the knowledge that already
exists.

Additionally, when a maintainer needs assistance the SME will create a case with the known

problem indicators and ask for suggestions. The system will them compare the list of indicators
with the indicators that have cases associated with them in the system. Through a matching

algorithm, the system will return a list of suggested actions to take as well as a rating of how

effective those actions have been in the past for this type of problem. For example, a problem

may have been solved 100 times through repair sequence 1, and it was solved 5 times using
repair sequence 2. Repair sequence 1 will be recommended first, together with a confidence

value that takes into account the successful repairs as well as how well the indicators match.

In some instances, a problem may not exist in the system; therefore, the system will return no
suggestions. At this point, the SME and maintainer are still required to troubleshoot the problem.
The resulting repair will then be entered in the system so that it may be suggested for the next

occurrence of the problem.

In the next iteration of the software, the following enhancements would be beneficial: 1) linking

the system through an API to a CMMS system; 2) defining a way of associating similar

platforms (e.g., a Chevy Silverado and a Chevy Tahoe may share the same engine or

PLDS17

transmission so certain repairs should be applicable across both platforms); 3) incorporating
failed procedures into the matching algorithm to reduce false positive matches.

Analysis of Available Data Models

Problem

Organizations with large-scale systems with many variants have to deal with the issue of

configuration management. Configuration management (CM) is an engineering and business

process approach to maintaining equipment over its lifetime, tracking what components are
installed in the system, and providing information on how to recreate, test and maintain those
components. Within configuration management there are 3 main thrusts when CM is integrated

into the business systems: during design of the products; during manufacturing (as made); and

during maintenance. As part of this project we investigated two data models that are used to
track a product's configuration and maintenance.

Goals

LEEDS is RIT's tool for maintaining engineering and assessment data on a set of platforms. We
investigated two international standards for organizing CM data: EIA-8362 CM Data Exchange

and Interoperability and MIMOSA , to determine which standard to adapt for basing our next-
generation LEEDS product upon.

Approach

From prior work investigating CM systems, we knew which particular standards we wanted to

analyze in-depth. The initial review of standards consisted of reviewing material available on the
internet for both models, and going though the XML which is used to describe the data models.
We converted the XML to graphical models, enabling us to more easily visualize data relations

and requirements. For MIMOSA, we joined the MIMOSA trade alliance organization, which
gave us access to design documents and application notes.

After understanding the data models, we evaluated applicability to the LEEDS system by looking
at which types of data are required by the data model and making comparisons to existing data

collected by the current LEEDS system. Another factor in the analysis is which markets are

implementing the standard. In the end, the MIMOSA system was selected for additional
development of a test system and for building a database and generating code for evaluation.

Results

MIMOSA was selected as the better candidate for future LEEDS data designs. It has a broader
industry acceptance and we have prior experience with it: our AHM system already uses a subset

https://acc.dau.mil/CommunityBrowser.aspx?id=32229
http://www.mimosa.org/

PLDS18

of the standard. Also, as RIT expands its capabilities into diagnostics tools the MIMOSA design
is better able to link AHM health data (sensor readings and alerts) to physical systems.

PLDS19

Remote Monitoring
& Advanced Support

Concepts
Mn*k*}Seiettk*ifarLAV583

10

t/23n*r*2l l/IMMJOM

VIVH 10:11 t/MWlS:!!

io/u/04 IS.-OJ ioy*wi?:oi

tl/Uff41S:12 11/1WM»:4J

U/TJWI0:4? U/7J041*!!

UA»«t«47 UAMHCI7

6. Remote Monitoring & Advanced Support Concepts

6.1. Description of Remote Monitoring & Advanced Support Concepts

Remote Monitoring and Advanced Support Concepts is the research of enhanced heath
assessment technologies and health management approaches for high-value equipment

and fleets of equipment. It is the decision-support technologies for use by maintainers,
fleet manages and operations managers to allow them to manage and sustain their

assets effectively. The core technology is health monitoring algorithms installed on

equipment outfitted with appropriate sensors and asset health-management systems,

communications networks, and appropriate software tools to aid stakeholders in their
particular role in the life-cycle support effort.

The recent operations in Iraq and Afghanistan have confirmed the need for DOD transformation
to more mobile and flexible military forces and to new logistics and sustainment concepts to
maintain these units. A number of initiatives are underway within the DOD such as Condition
Based Maintenance + to support this transformation. These system concepts rely on mobile
communications networks, increased status reporting from weapon system platforms (battlefield
OnStar) as well as planning tools within command and support services that allow them to
rapidly analyze and respond to battlefield needs. However, significant technology gaps in remote
platform health monitoring and condition-based sensing, particularly for legacy vehicles, are
slowing this transformation. Further pressure is placed on these older systems as new logistics
and support concepts being developed by the DOD also require improved visibility of the state of
military equipment, including position, health, fuel, ammunition, and supply levels.

To support advancement of ONR initiatives in autonomic logistics, RCM, and CBM+, C1MS has
performed projects in the following areas: Applied Remote Monitoring & Support Technologies,
Asset Health Management hardware & software improvements. Advanced Anomaly Detection &
Diagnostic Framework Technologies, and Improved Maintainer's Tools.

Applied Remote Monitoring & Support Technologies focuses on implementing AHM systems
on multiple platforms for the purposes of collecting data for analysis and demonstrating new
AHM algorithms & technologies. Asset Health Management hardware and software
improvements consists of projects to develop new data acquisition and system health node
hardware, as well as new software protocols and implementations that broaden the capabilities of
the AHM system. Advanced anomaly detection & diagnostic framework technologies consists of
data mining and algorithm development activities that advance the diagnostic and prognostic
capabilities within AHM. Improvements to the maintainer's tools will provide the maintainers
and system developers the ability to analyze data during missions through an improved user
interface.

RM&ASC1

6.2. Remote Monitoring & Advanced Support Concepts Research
Objectives, Progress, and Results

Applied Remote Monitoring and Support Technologies

Reliability Centered Maintenance is a tool for analyzing systems and failures on a platform. The
results of the analysis are a series of recommendations surrounding preventative maintenance,
condition monitoring, and system/sub-system redesign. Under this contract, CIMS facilitated an
RCM analysis of the new LAV AT A2 Turret. The resulting analysis provided the LAV
community with an understanding of the potential functional failures of the system and a
preventative maintenance program design that would minimize failures while in the field.

Asset health management technology research has been applied to varying degrees, including
implementation as part of the Embedded Platform Logistics System (EPLS). To further this
research, CIMS performed implementation of AHM on multiple platforms to further collect data
and implement new diagnostic and prognostics algorithms. AHM was implemented on a
commercially available engine, representative of an Unmanned Aerial Vehicle (UAV) engine,
which had previously been converted to run on JP-8. The implementation allowed for
development of an algorithm for prediction of glow plug failures. AHM was additionally
installed on two engines on an engine dynamometer, allowing for development of algorithms that
can detect abnormal fuel use or high exhaust gas temperatures based on current operating
conditions. An implementation of AHM was also performed on the Grizzly AVGP to enable a
practical implementation of improved algorithms on a real-world mobile platform. To further
advance AHM on the LAV, a study was performed on the vehicle data from the EPLS program,
specifically related to known failures and the correlating data in an effort to improve diagnostic
algorithms. This analysis resulted in a correction of some algorithms and a better understanding
of the data required for improving diagnostic and prognostic algorithms.

AHM 3" Generation Hardware Improvement

To advance the implementation and capabilities of the AHM hardware, CIMS performed
multiple hardware development and feasibility studies. Low-cost vibration monitoring equipment
is one of areas CIMS researched. CIMS designed and evaluated hardware that would collect and
process vibration data from a 3-axis accelerometer utilizing algorithms developed in MATLAB.
It was determined that the hardware selected was not capable of processing vibration data more
than 20 kHz and that utilizing MATLAB for the algorithms still required extensive knowledge of
the C code on the hardware. In order to be able to transfer data from the new hardware, a
protocol was developed that would transfer the waveforms across a J1939 data bus. The speed of
the data bus limits the transfer to a 6 kHz signal continuously. However, to mitigate data transfer
issues, the protocol implements triggers which will send bursts of data across rather than
continuous data, thus reducing traffic on the data bus.

RM&ASC2

Two additional hardware feasibility studies were completed for a compact USB interface to
J1939/J1708 data buses and for running AHM on a low-cost ARM based processor running
Linux. The USB interface was designed and determined to be capable of reading from both a
J1939 and a J1708 data bus. The limitation on this interface is the susceptibility of USB to noise,
which is of particular concern in vehicles. In an effort to run AHM on low-cost ARM-based
hardware, CIMS chose an off-the-shelf processor board and built other daughter boards that were
capable of collecting data from the vehicle data bus, an accelerometer, GPS, Wi-Fi, cellular and
Bluetooth communications. The ARM processor was easily capable of running AHM and
collecting data. This proof of concept also means that AHM could be run on a commercial piece
of hardware like a cell phone if a vehicle is equipped with Bluetooth data bus adapters.

For its final area of hardware development, CIMS chose to add OBD-I1 capability to AFIM.
OBD-II is the standard data bus and communication protocol for light vehicles, i.e., typical cars
and trucks. Because the military has a large number of support vehicles that are light duty,
adding this capability to those vehicles would enable the military to monitor the majority of its
vehicle fleet. The hardware was developed using a commercially available chip that interfaces
with OBD-II and utilizes the power on the OBD-II data bus to cause the hardware to start and
shut down. The major difference with the OBD-II protocol is that data must be requested from
the data bus, as opposed to J1939 and J1708 which typically transfer data at a certain rate. As
part of this program, CIMS developed software that would request and parse the data from OBD-
II into AHM.

AHM 3" Generation Software Improvements

Multiple software development projects were undertaken to improve the AHM software.
Previously, AHM utilized MySQL for the onboard database, which is limited by licensing,
reliability, size, and space management. So in an effort to remove MySQL, CIMS developed a
flat file based data storage mechanism that is more compact, faster, reliable, and robust to system
power losses. In addition, a fiat file receiver was written that would automatically receive the
files, parse them, and input the data to a Master database on the backend. The user interface for
the receiver was a minimalistic design that informs the user if problems have occurred, i.e., a file
was not received by the server. Combined, these efforts replaced MySQL and the MySQL
replication process used for transferring data to the backend server.

After implementing AHM on many vehicles, including those selected for the EPLS program, it
was determined that AHM had a slight flaw in handling the J1939 data bus signals. Originally
AHM was designed to be utilized with a J1939 data bus designed and implemented on vehicles
that previously did not have a data bus. Therefore, by design, no two ECUs would report the
same signal. However, it was determined that standard vehicle data buses do not adhere to this
rule. Therefore, we could potentially have two data buses reporting vehicle speed utilizing two
different sensors. This becomes problematic when one sensor goes bad because the signal might
jump between a good value (60 km/hr for example) and a bad value (0 km/hr if the sensor is

RM&ASC3

broken). This jumping back and forth would trigger the data to be marked as bad, even though
one of the signals is good. CIMS implemented a signal selection technique that would allow the
AHM programmer to prioritize the ECUs that it would like to utilize. The system would then
evaluate the signals in priority order until it determined that one of them was good and then it
would populate the data port with data only from that known good ECU and sensor. In addition,
for tracking purposes, the system was designed to keep track of which ECU the stored data was
received from.

With hardware having been developed to send waveforms off of a platform, a tool was needed
that would allow the data to be visualized for evaluation. The tool allowed the various
waveforms to be loaded and graphed, as well as the ability to save the data into CSV fdes for use
in MATLAB. The tool was generally used for debugging purposes.

One of the future goals of AHM is to be able to have an engineer be able to set up all aspects of
AHM without requiring programming skills. In a first step toward this goal, CIMS developed a
tool for programming the data acquisition nodes so that and engineer does not need to write code
in C. This tool utilized a database of J1939 signal definitions to allow the user to select which
signals he wanted to output. Through a graphical user interface, the user can select the hardware
channel that he would like to use, define any sensor conversion that need to be done, apply
sensor fault limits, define sampling and filtering rates, perform any calculations that the user
would like, and select the JI939 signal definition to report the data through. After defining all of
these factors for each signal on a DAC, the user can select for the system to create the
programming file for the DAC node. The DAC programming tool was successfully demonstrated
on the Grizzly vehicle when an AHM system was applied to it.

As previously stated, AHM was originally designed to be utilized on vehicles that did not have a
data bus. As the system was designed by an engineer and implemented, all processing for vehicle
alerts could be done at the System Health Node. However, as AHM was moved forward and
added to vehicles containing existing data buses, AHM did not have the ability to process alerts,
also known as Diagnostic Trouble Codes, from existing vehicle ECUs. Under this contract, a
data model was developed and data parsers were added that could translate the existing DTCs
into a format that could then be saved in the database. DTCs are now capable of being collected
from both the J1939 and J1708 data bus.

In order to build an AHM application for a platform, an engineer must have an understanding of
what signals exist on a platform. Previously an AHM system needed to be installed and data
captured to a file for parsing later to identify the signals. In an effort to speed up this process, a
tool was designed in MATLAB to parse the files. The tool provided an Excel workbook with
multiple spreadsheets in it. The first spreadsheet was a list of signals being reported by the
platform. The sheets that followed provide a graph of each signal that was captured allowing the
engineer to determine if the reported signal is actually a valid signal. This tool allows for quick
identification of signals for developing new applications.

RM&ASC4

Maintainer Tools

Once signal data has been collected on a platform, a user must be able to access and utilize the
data. The Maintainer's Graphical User Interface (MGUI) developed by CIMS has been the
typical tool used to access this data. During this program, a few improvements were made to the
interface to make data analysis easier. First, a new charting library was utilized to provide more
features and avoid licensing costs. Dynamic downsampling of datasets was employed to improve
performance when visualizing large datasets. Users can add annotations and titles to graphs,
which can subsequently be saved as images or printed. Selection of missions was modified to
allow selection of multiple missions, filtering of missions by the data in the mission, and the
ability to move forward and backward through the missions while viewing existing graphs.
When viewing scatter (X-Y) graphs, the data may be filtered by time.

Previously, MGUI allowed the user to select data to be viewed based on what data exists in the
database at the time the mission selection screen is populated. Thus, if a mission is ongoing, only
data up to that point is available for graphing and as data is added to the database, it will not be
available to MGUI for graphing. The interface for data access was modified to allow MGUI to
continually add data to graphs on the screen as data is added to a mission. Thus a maintainer can
pull up a graph of critical signals and view them in real-time as the vehicle is being driven. New
data is simply added to the graph and the display is updated. This is useful both as a maintenance
aid and as an algorithm development aid.

Advanced Anomaly Detection and Diagnostic Framework Technologies

As datasets are becoming available from AHM type systems, the next logical step is to identify
what can be learned from the data. With a health monitoring system, these efforts generally
revolve around development of diagnostics and prognostics for improved platform performance
and reduced downtime. CIMS performed multiple projects aimed at better utilization of available
data. In one instance, data was evaluated around an oil pressure DTC reported by one of the
vehicle ECUs. Utilizing a regression based model to predict oil pressure, a threshold was applied
to the differential between the predicted pressure and actual pressure. Through testing it was
determined that the regression model could predict the oil pressure anomaly prior to the DTC
occurring. This early detection could prevent costly breakdowns while the vehicle is in service.

Another critical issue with large signal sets across multiple platform types is the ability to
identify the functional relationships between the signals. Utilizing a subset of signals and data to
reduce overall complexity, CIMS evaluated the ability of the gridded residual regressor model to
identify relationships between the signals. Utilizing this technique, CIMS was able to confirm
that oil temperature and engine speed are the best signals for predicting oil pressure. It was
determined that this method could be utilized for identifying relationships between signals when
the correlated signals are limited in number, i.e., 2 or 3, but a boosted regression tree might be
preferable if more dimensionality is needed.

RM&ASC5

In order to perform data analysis, the data must be able to be trusted as being valid. In efforts to
ensure "clean", valid data, CIMS implemented an expanded set of sensor fault detection
methods. Specifically, multi-sensor fault detection (MSFD) was necessary to identify signals that
might appear to be valid on their own, but when compared to other signals appear problematic.
CIMS implemented two MSFD methods, cross-correlation and Dempster-Shafer. The cross-
correlation method was utilized on data from the LAV to identify temperature sensor faults in the
planetary wheel hubs that may not have been identified by a simple limit-based algorithm. The
Dempster-Shafer method was utilized to identify a noisy battery shunt current measurement on
the LAV.

Although real-time diagnostics and prognostics of mechanical systems have either been done or
have proven feasible, applying prognostics to electrical systems has not been well established.
CIMS chose to perform a feasibility study on a switched-mode power supply on a HALT test
fixture to determine if signals could be correlated and predict failure. The study was successful
and the real-time correlation predicted failure approximately 30 minutes prior to actual failure.
As this was on an accelerated test, detection of the failure under normal circumstances may have
provided a significant advanced warning.

AHM utilizes a relational data table structure with asynchronous data storage. This is done to
reduce the quantity of data being written into the data store. However, for data analysis purposes
on the backend, the data typically needs to be resampled to a synchronous data set. CIMS tested
the performance of a typical data warehousing system. The first step was to translate the data
into the data warehouse, followed by a series of queries to verify performance. Once the data has
been translated, there is a significant performance improvement in accessing data because the
synchronization step has already been done. This improvement can be significant when
analyzing large data sets.

One of the recent areas of study for the AHM system surrounds improving driver behavior to
reduce fuel consumption. Early models for improved behavior simply took into account engine
speed and vehicle speed. However, CIMS was interested in modeling the mechanics of the
system to be able to identify whether outside factors are affecting the fuel efficiency, i.e., hills or
wind. CIMS struggled to model the system due to the unpredictability of system variables, such
as vehicle mass, etc. However, it was determined that modeling the fuel consumption allowed
identification of engine manufacturers and designs which could allow for further enhancements
of the algorithms.

Another application of AHM technology at CIMS was for monitoring of a Solid Oxide Fuel Cell.
An analysis was performed to improve the prognostics surrounding reactant ignition in the fuel
cell. The baseline was performed using sequential Monte Carlo simulation and vector
quantization techniques. Varying techniques were then applied to attempt to improve the
prediction of failure without increasing false positives. It was determined that Boosted

RM&ASC6

Regression Trees, Gaussian Process Regression, Minimax Classifiers, and Additive Groves
could all be utilized with near-perfect prediction results.

6.3. Remote Monitoring & Advanced Support Concepts Projects

The following projects conducted during this contract period under the RM&ASC include:

Projects

• Applied Remote Monitoring and Support Technologies
o Implementation of AHM for a commercially available engine, representative of a

UAV engine
o RCM Analysis of the LAV AT Turret
o LAV Engine Performance Data Collection
o EPLS Alert Analysis
o Grizzly Vehicle AHM Development

• AHM 3r Generation Hardware Improvements
o Vibration Data Acquisition Controller
o Waveform Data Bus Protocol
o Feasibility and Prototype of a USB-based Interface for Vehicle Communications

(Compact Bus Interface)
o Feasibility of Running AHM on Low-cost ARM Based Hardware Running Linux
o OBD-II implementation

• AHM 3r Generation Software Improvements
o Flat File Database System for Real-time Health Monitoring Applications
o Flat File Database Receiver and Platform Data Synchronizer
o Multi-Source Signal Support in Asset Health Management (AHM)
o DAC Graph Tool
o DAC Node Programming Tool
o DTC Data Model J1939 and J1587 Listener Improvements
o Bus Data Analysis and Visualization

• Maintainer Tools

o Improved User Interface for the Maintainer's Graphical User Interface (MGUI)
Tool

o Live Mission Data Viewing of Asset Health Management (AHM) Data in the
Maintainer's Graphical User Interface (MGUI) Tool

• Advanced Anomaly Detection and Diagnostic Framework Technologies
o Data-Driven, Supervised Anomaly Detection
o Functional Relationship among Signals for Anomaly Detection and Virtual

Sensing
o Multi-sensor Fault Detection

RM&ASC7

o Switched-Mode Power Supply Data Analysis
o Vehicle Data Warehousing and Analytics
o Fuel Usage Analysis
o Solid Oxide Fuel Cell Diagnostics

RM&ASC8

Remote Monitoring &
Advanced Support Concepts

PROJECTS

Remote Monitoring & Advanced Support Concepts

Implementation of AHM for a Commercially Available Engine, Representative of a
UAV Engine

Problem
The Unmanned Aerial Vehicle (UAV) is one of many platform assets used by the U.S. Armed
Forces. Reliability of these assets is a top priority, leading to the application of Condition-Based
Maintenance (CBM) methodologies to ensure the asset will perform as required to complete a
mission. Remotely operated systems such as the UAV require the ability to monitor system
functionality to detect potential failures in a timely manner.

Goals
The objective of this effort is to develop a next-generation Asset Heath Management (AHM)
system, which includes enhancements to hardware and on-board and off-board software, using a
commercially available engine that is representative of a UAV engine as a demonstration
platform. Figure 1 shows the representative UAV engine test stand setup.

Figure 1. UAV Engine Test Stand.

The AHM application will be developed from the work done in several key areas:

1. Reliability Centered Maintenance (RCM) evaluation.
a. Identify UAV functions and functional failures to determine which signals to

monitor in order to implement failure detection and CBM.
2. Identify Sensors and signals.

RM&ASC9

a. Select sensors and hardware for monitoring the UAV to predict failure modes for
specified functional areas as a result of the RCM.

3. Develop CBM methodologies.
a. Identify a set of actions a reasonably trained maintainer can accomplish on a

system to eliminate a functional failure or improve the system performance.
4. Data Acquisition (DAQ) development.

a. Develop deployable data acquisition hardware capable of monitoring identified
signals, including vibration. This DAQ hardware will be designed for use in
demanding military environments.

Approach
An RCM analysis was performed to identify the functions and functional failures of a UAV
system. The end result would be to categorize failures by severity and frequency of occurrence,
and identify maintenance tasks.

One example for a specific symptom of low cylinder pressure can be caused by several different
faults:

• Fault examples: Wear or cracks in cylinder or rings, carburetion faults, valve
malfunctions, weak spark, mistimed spark.

• Fault frequency: Low.
• Fault severity: Moderate to high.
• Prognostics horizon: can be long.
• Sensors availability: Sensor in UAV test stand; unknown expense for production engines;

sensor itself could lead to seal leakage faults.
• Likely features: Limits, cylinder-cylinder differential, double peaks (detonation), rise and

fall times indicating intake or exhaust obstruction.
• Fault injection: Carburetion, electrical.

The next step was to analyze the maintenance procedures from a functional breakdown
perspective. This examines each subsystem and lists the failure effects and performance issues
that a maintainer can detect with minimal added equipment. Figure 2 illustrates the functional
systems of the UAV and sensor signals identified. The functional analysis was used to determine
which additional sensors and equipment, if any, are needed to allow the maintainer to segregate
between a system failure (in this case the engine) and external element failures.

A diagnostic engine will be incorporated into AHM as a result of the functional analysis. The
idea is that, given vehicle condition information primarily in the form of alerts, operating
context, and sensor data, the diagnostic engine will process a series of "rules" to determine a
probable cause of an indicated failure.

RM&ASC10

Air Intake Speed

Air

Fuel/Oil Mixture

UAV Engine

Cooling Air
f\ ^ Cooling Airspeed

Cooling Air Temp

Fuel Consumption

Throttle

^

:6-
Throttle Position Sensor

Inlet Manifold Pressure,
inlet Manifold Temp

Mounting
-
/

Engine Block Vibration

Starter Voltage
Starter Current

12 Volts

-e- Operator Input

Starter Switch Engaged

/

Pump Fuel
To Engine

Mix Air and
Fuel To Proper

Ratio ~r _
S12

-^
Transfer Port Prt ssure
Transfer PortTer ip

Keep Engine
in Place

(Mounting)

Lubricate
Rotating Parts

■
Remove

Heat From
Engine

Combustion Analyzer
Cylinder Pressure

S Cylinder Temperature

Heat

x^i

Start/
Slop

Engine

-O-

Convert from Chemical to
Mechanical Power

Cylinder Temp

Mechanical Torque
^To Propeller

Produce
Spark ^

Convert Mechanical
Power to Electrical

Power

Remove
Exhaust from

Engine

Torque
Power
Crank Angle Indicator

Exhaust to Air

■&

Coil Output Voltage

Exh manifold temp
Exh manifold press

Figure 2. UA V Functional Diagram.

Results

A more robust AHM system was developed and applied to the representative UAV engine,
which monitored functional systems as identified through the RCM analysis. The analysis
identified 11 high-priority and 5 low-priority signals to be included in the AHM system. One
failure, in particular, was identified and investigated further. The glow plugs used to pre-heat the
combustion chamber of the engine were seen to fail on occasion. To better understand this failure
and develop a predictive model, testing was performed to accelerate glow plugs to failure. The
data from this testing was used to develop preliminary rules to be applied in AHM for prediction
of glow plug failure. The methodologies used to develop these preliminary rules can be applied
other systems in a similar manner.

RCM Analysis of the LAV AT Turret

Problem

The U.S. Marine Corps and the Program Manager-Light Armored Vehicle (PMLAV) were
evaluating upgrading the LAV Anti-Tank (AT) legacy turret with a new design. Prior to
finalizing a design, PMLAV wanted to complete a full RCM analysis of the platform in order to
reduce maintenance downtime and cost, and to increase readiness and availability.

Goals

The objective of this project was to improve reliability of the LAV AT A2 turret platform while
reducing the overall lifecycle support costs without jeopardizing mission capability, crew safety

RM&ASC11

or environmental quality. The desired outcome is to provide appropriate and cost-effective
maintenance policies that maintain system functionality while reducing safety hazards and
environmental effects of failures. A key goal is to develop maintenance technology requirements
where Condition Based Maintenance (CBM) technology could be implemented in conjunction
with USMC Autonomic Logistics (AL) initiatives.

Approach

The Reliability Centered Maintenance (RCM) process, following the SAE JA1011 "Evaluation
Criteria for RCM Process " and SAE JA1012 "^ Guide to the RCM Standard" was used in the
analysis of a new U.S. Marine Corps' LAV AT A2 turret design. The RCM process provided an
in-depth assessment of the functions, functional failures, and failure modes of the new LAV AT
A2 turret design.

The assessment of the turret occurred during a 12-day training and analysis session in San Diego,
CA. The team consisted of facilitators from RIT, a depot field service representative, PMLAV
quality assurance. Marine Corps operators, maintainers, and logisticians for the LAV AT A2.

The RCM analysis began with an assessment of the system's functions and functional failures,
followed by the identification of failure modes and consequences, and finally, when possible, the
creation of detailed maintenance tasks to address the identified failures. This particular analysis
session gave the Marines and PMLAV Turret Design team a chance to communicate their
thoughts and ideas through a structured approach, where the details of the analysis were captured
in a RCM database developed at CIMS, shown in Figure 3.

RM&ASC12

'Z
«■ ^hobaai dui aOei* ffv fuvtmn rii

B.MII.. - ., .

Figure 3. RCM Database

As a result of the dynamic nature of the design, there was limited insight into the proposed
system; for this reason, the Stryker vehicle TOW turret platform was used as a reference design.
Also, because current maintenance procedures or manuals for the proposed equipment do not
exist, this RCM analysis should be considered a baseline for this system.

Results

Following the analysis, RCM coordinators used the collected data to create a maintenance policy
that attempts to eliminate or reduce the consequences of functional failures on the operation of
the asset. This policy may then be incorporated into procedures used to maintain the asset or
system. Based on the evaluation the following maintenance policies were identified for the LAV
AT A2 Turret:

• Scheduled Tasks
o Zonal inspections and walk-around checks
o Operator maintenance and preventative maintenance
o Operational maintenance

• Default Tasks
o Recommended design changes
o Failure finding

RM&ASC13

Following a review of operator maintenance procedures and instructions for the current LAV AT
Turret, the team prepared a synopsis of critical new maintenance tasks that would be needed for
the LAV AT A2 Turret. The RCM analysis of the LAV AT A2 turret resulted in the
identification of the following functions and failures that the new maintenance tasks would
address:

• Functions
o 2 Primary
o 9 Secondary

• 238 Failure modes
o 2 Severe safety consequence
o 2 Hidden

Tasks were created based on the knowledge of the PMLAV team of what components may be in
the new LAV AT A2 Turret, together with the maintainers' and operators' knowledge of the
current system. This research is presented in Table 1.

The normal outcome from a typical RCM analysis is a reduction in the number of maintenance
tasks, based on the analysis, from the currently implemented maintenance program. Current
maintenance requirements for the LAV AT A2 Turret are not yet clearly defined because of the
dynamic nature of the new turret design.

Table 1. Recommended Maintainer Tasks to be Included in TM

W-Weekly M - Monthly S - Semiannual A-Annual B-Biennial

Item

No.

Interval Item to be Inspected

Procedures

RCM Task #

W M S A B Hours

New

®

RCM: Traverse Drive and
Mast Drive Timing Belt:
Further study recommended
to determine wear of belt vs.
time.

215,289,323,385,
462, 523, 596

New ® RCM: Check electrical
ground connections for
corrosion. Clean and add
dielectric grease if
necessary.

564

RM&ASC14

Item

No.

Interval Item to be Inspected

Procedures

RCM Task #

W M S A B Hours

New @ RCM: Inspect resilient
mounts and replace if
needed.

627, 635

New ® RCM: Inspect slip ring for
corrosion and water damage.

212,267,282,361,
364, 469, 520

New ® RCM: Check and adjust
bore sights.

207

New m RCM: Inspect turret ring
bearing for corrosion; Lube,
(current design not known)

213,271,280,362,
390, 470

New m RCM: Grease and lube
turret drive gear components
if necessary.

591

New @ RCM: Inspect elevation
drive and motor.

222, 247, 284, 328,
393, 425, 455

LAV Engine Performance Data Collection

Problem
A large source of data is necessary to support prognostic and diagnostic development. Although
the Embedded Platform Logistics System (EPLS) program was planning to install an Asset
Health Monitoring (AHM) System on approximately 700 Light Armored Vehicles (LAV), there
would be significant benefit to collecting data in a controlled environment. This data could also
be utilized to develop algorithms for accurately calculating unavailable parameters from
available signals, as well as determining the effects of AHM data processing on the ability to
utilize the data for data mining.

Goals
Under another program, RIT was contracted to collect LAV engine data on an engine
dynamometer utilizing a National Instruments (NI) data acquisition system. The goal of this
program was to develop an AHM system that would process the collected data into the AHM
format. Additionally, RIT was performing a data collection and analysis program for evaluating

RM&ASC15

biofuels for the Department of Transportation. This program provided another source of data for
a Cummins diesel engine. The data collected could then be used for development of new
algorithms for diagnostics and prognostics, revision of existing algorithms, and to gain a better
understanding of the effects of the AHM approach on long-term data usability. In addition, since
the engine is running in a controlled environment, algorithms could be tested for repeatability
and accuracy.

Approach
The AHM data collection system that was implemented on the engines on the dynamometer was
based on the most recent ONR-developed AHM code, with many of the features from the EPLS
system included. The system utilized the same data variances for downsampling and alert limits
utilized in the EPLS system as a starting point. For the LAV engine, data was collected with the
NI system and then run through AHM as a post-process.

The EPLS system was the starting point for the LAV engine sensor set for the other program;
however, different sensors were used and additional signals were collected. This would allow for
an expanded data set and a comparison of sensor and data accuracies vs. the data collected in the
field. For the Cummins engine, data was collected through the existing J1939 data bus for the
engine.

Results
The data collection system was utilized to collect approximately 14 hours of LAV engine data
and approximately 570 hours of Cummins engine data from the dynamometer. This data was
collected and processed into the AHM data format in a database on the server. The data is
available for data-mining purposes. Additionally, the dynamometer was used significantly for
testing new algorithms. For example, utilizing data on the engine dynamometer allowed for
development of an algorithm that could predict the fuel usage from engine torque, engine speed,
intake manifold pressure and engine load. The predicted value could then be compared to the
measured fuel usage, allowing AHM to identify when the vehicle was using significantly more
fuel than necessary.

Similarly, an algorithm was developed that could predict the exhaust gas temperature from
engine speed and torque under normal circumstances. Comparing the predicted temperature and
the actual exhaust gas temperature would identify potential engine issues. Development of these
algorithms takes a significant amount of time and data. Many variations of the algorithms were
developed and run under varying engine speed and load profiles to determine the best algorithms
for final implementation. The resulting algorithms are applicable to the MTVR because they
actually collect engine speed, load, and torque, as well as intake manifold pressure from the
vehicle data bus.

RM&ASC16

EPLS Alert Analysis

Problem
The Embedded Platform Logistics (EPLS) system had been deployed on a small number of Light
Armored Vehicles (LAVs) for pilot testing of system functionality. The reliability of the EPLS
system and the ability to differentiate between an actual system failure and false alarm is
dependent on the accuracy of the sensors and EPLS software. Data collected on 16 LAVs over
several months required an in-depth analysis to validate EPLS system performance and its
effectiveness in identifying failures.

Goals
One objective of the analysis was to classify alerts as: actual system faults, sensor faults, EPLS
system faults, or other anomalies in order to assess the overall system effectiveness and look for
opportunities to improve algorithms. Another objective was to identify the anatomy of a specific
LAV failure and create a knowledge base for future learning and application to improve EPLS
functionality and support condition-based maintenance policies. The main goal of this project
was to develop better diagnostics capabilities to enhance the EPLS system and relate a set of
symptoms to a diagnosis of a root cause for a failure.

Approach
The preliminary analysis of the EPLS system on the LAV evaluated active alerts based on the
criteria listed below. The results were used to determine the importance and whether further
investigation into the alert was necessary.

• Frequency and duration of occurrence.
• Number of vehicles affected.

• Severity of alert and potential for system/vehicle failure.

• Alerts for components and systems that are known to have had failures.

The alerts analyzed in more detail were selected based on frequency of occurrence, number of
vehicles affected or the severity of the alert. Once an alert was chosen, the first pass was to select
relevant missions with the alert and look for mission-to-mission similarities for a single vehicle
and commonalities across platforms. Good missions with no active alert present, with similar
operational context, were also selected as a baseline "good vehicle" for comparison. Operational
context can be defined as operating and environmental conditions present.

The general rule for selecting relevant mission data to review is as follows:

1. Identify an alert of interest and filter to select missions where the alert is active.
2. Determine active modes during the alert, such as engine on or drive, to determine the

operational context for comparison and filter missions especially for alerts that had
multiple modes associated.

RM&ASC17

3. Randomly select five missions with alerts, from beginning, middle, and end of the data
range for comparison.

4. Randomly select vehicle missions with no active alert while in same modes determined
when the alert was active, as baseline for good vehicle for comparison.

5. Create a set of rules and definitions, describing conditions leading to the alert, which can
be used to define alert context, which can be applied to future instances of the alert.

The defined conditions leading to an alert can be used in an algorithm that can be applied across
multiple vehicles and missions, reducing the amount of time spent sorting through mission data
manually.

Results
Eight vehicles and ten alerts were analyzed in depth for EPLS data available shown in Table 2.
In 3 of the 10 alerts, it was found the multiple vehicles with the same alert resulted in the root
cause being business-rule related. The available data supported the fact that changes were made
to the business rules to correct the alert occurrences. The other alerts did not have enough
supporting data to draw a strong conclusion as to the root cause. It is clear that from the data
analyzed that the EPLS system was still being refined to more accurately report actual alerts.
Better refinement of the system will allow for more efficient data analysis and the ability to
discern between alert and sensor fault.

Results of this comprehensive analysis can be used to optimize future data analysis efforts on
EPLS or other vehicle data. Results discussed here can be used to improve EPLS system
functionality on the LAV and to maximize its performance in determining actual alerts on the
vehicle or sensor/system faults. Several recommendations can be made as a result of this effort:

1. Assessment of LAV system functionality to support more accurate alert limit and mode
definitions in the business rules.

2. Improved organization and communication between field and back office to report and
track changes made in the field.

a. Maintenance data would be useful and allow for data comparisons before and
after a maintenance event.

3. Larger data sets with more vehicles to support analysis conclusions.

Tools were developed to filter mission data more efficiently. These tools can serve as a building
block for future analysis tool development.

For each alert analyzed, a set of conditions to identify specific features where created to look for
similar instances across different missions and vehicles. It is important to note that in the absence
of an active alert, the ability to look for an alert based on defined operating conditions is
necessary. This can be useful when these instances are periodic and not active long enough at
any given point to activate an alert.

RM&ASC18

Table 2. Alert Analysis Results.

Alert ID Description Root Cause Associated
Vehicles

1762 Hydraulic Pressure Alert Limits
definition

110, 138, 157, 164

167,+
Multiple

BIT Alerts
(electrical)

Electrical system anomaly;
Multiple alerts and sensor faults
active as a result of this anomaly

EPLS System Ground
Fault 160

14008 Secondary FF pressure drop Alert/mode definition 110,137, 155,157
1127 Turbo Pressure Bad STE-ICE sensor 110

14942 Primary FF pressure drop Alert Limits /mode
definition 157

14967 Primary Fuel Filter Input Pressure Filter Restriction 137, 157, 159, 164
14006 Alternator Field Voltage Unknown 110,138, 157, 159,

190 Engine Over Speed Governor, Operator
error

110, 135, 157, 164

190 Engine Under Speed EPLS System 138, 157, 164

14019 Engine Coolant Level EPLS System 110, 137, 138, 157,
159, 164

100 Engine Oil Pressure Unknown 110,137, 138

Grizzly Vehicle AHM Development

Problem
As algorithms are developed for the Asset Health Monitoring (AHM) system, most testing is
performed through data playback of previously recorded data. There are limitations to this as the
data being run through the algorithms in AHM during playback have already been subjected to
downsampling. However, when AHM is run on a vehicle, the algorithms are run on the raw data
being received by AHM (i.e., without downsampling). This can have a large impact on the
performance of algorithms, especially those designed to run based on a number of samples
instead of those running on a specific schedule. A demonstration platform with an AHM system
would be beneficial to analysis of algorithms against raw data, especially allowing the platform
to be driven under specified conditions to obtain a specific result.

Goals
The goal of this program is develop an AHM-
equipped platform that can serve as a real-world
platform for testing, validating and demonstrating
new algorithms in AHM.

Approach

The Grizzly Armored Personnel Carrier is part of the Canadian Armored Vehicle General
Purpose (AVGP) family of vehicles; see Figure 4. The Grizzly is a six-wheeled vehicle utilizing
many of the same components as the U.S. Marine Corps' Light Armored Vehicle (LAV). RIT
was in possession of two Grizzly vehicles previously provided by the Marine Corps on another
grant project. An AHM system was developed for the Grizzly that could collect data from a
slightly expanded sensor set than was used on the LAV during the Embedded Platform Logistics
System (EPLS) program. This platform will allow further development of algorithms for
improvement of a monitoring system for the LAV.

Results Figure 4. Grizzly in CIMS Research Bay.

The Grizzly was equipped with a System Health Node, Power supply, Data Acquisition Nodes, a
wireless planetary temperature measurement system, and various sensors. The System Health
Node main board was upgraded to an Intel Atom processor-based system, which provided
additional computing power, more memory, and expanded storage abilities. The AHM software
utilized the most up-to-date algorithms for sensor fault detection, battery prognostics, oil life, and
multi-modal anomaly detection. This also was the first mobile test platform to utilize the Flat
File storage mechanism instead of MySQL.

Vibration Data Acquisition Controller

Problem
AHM systems need to acquire vibration data as part of asset monitoring. Cost-effective
commercial systems that support rapid development and deployment for research purposes are
not available. CIMS initiated a project to create a low-cost data-acquisition platform capable of
monitoring vibration in various types of equipment, and to support algorithm development using
MATLAB or Simulink.

Goals
The goal of this project was to develop a deployable data-acquisition node (DAC) capable of
monitoring vibration of various types of equipment. The node would be designed for use in
demanding military environments. The node would have the ability to use advanced tool sets for
algorithm development, which could be downloaded via the communications bus. The data
gathered by this node would be communicated over the same bus. From the data collected,
condition-based monitoring could be developed. Vibration data could be used to detect many
failure modes including bearing fatigue, cracked or broken gears, loose armature laminations,
etc. If the potential for failure is detected soon enough, proper maintenance could be performed
before serious failures occur. This node can be used to detect gear defects such as propagating
cracks in real-time applications.

A second goal was to simplify the process of creating algorithms that are run by the hardware.
CIMS researched the feasibility of using code generated by MATLAB for embedded vibration

RM&ASC20

analysis, instead of custom-written C code. One of the advantages of this concept is the ability to
develop a signal-processing algorithm in MATLAB using standard MATLAB algorithms. Only
after thorough testing and debugging in MATLAB would the algorithm get deployed to the DAC
node.

An additional goal was to use the fixed-point and floating-point simulators available in Texas
Instruments Code Composer Studio to evaluate the performance of MATLAB-generated
algorithms. These two emulators were chosen because they are representative of the fixed-point
and floating-point processors currently available from Texas Instruments.

Approach
A prototype vibration DAC was developed meeting the following general requirements.

• Monitor vibration from 3 accelerometers simultaneously on analog channels 1-3.
• Support a generic input on analog channel 4.
• Support a digital tachometer input.

• Support transmission of waveforms and other data over a J1939/CAN bus or over
Ethernet.

• Support software-configurable sample rate for analog channels.

• Provide a hardware filter for each channel with software-configurable gain and cutoff
frequency.

• Support configurable calibration values (gain and offset) for each analog channel.
• Support algorithm development using MATLAB.

The key hardware component is the embedded processor. For this application we wanted a
processor capable of running algorithms generated by MATLAB. Our goal was to reduce the
complexity of algorithm development to the point that algorithms can be developed, targeted,
and tested by a subject matter expert, rather than a specialist in embedded development.

A key decision was choosing either a floating-point or fixed-point digital signal processor.
Floating-point processors have much greater dynamic range, but at the expense of lower overall
processing throughput, higher component cost, and greater power consumption. In many cases
fixed-point processors can do everything a floating-point processor does, but they require that all
signals be scaled appropriately to make maximum use of the more limited dynamic range of
fixed-point calculations.

The processor we selected was the Texas Instruments TMS320DM6437. This is a fixed-point
digital signal processor that was chosen in part because of the built-in CAN interface, but also
because it was claimed to be supported by the MATLAB code generation tools.

An additional technology decision was the analog signal processing chain up to and including the
analog-to-digital converter. In previous projects we used high-resolution, multi-channel A/D
converters. These converters use a multiplexer to select one of up to 16 channels, routed to a

RM&ASC21

single A/D converter. There are two negative side-effects to this design. First, the multiplexer
arrangement means that samples of multiple channels cannot be taken simultaneously. Second,
the multiplexing arrangement means that the effective sampling rate of the A/D converter is the
speed of the converter divided by the number of channels. For example, a 10 k sample per
second A/D converter with 8 channels has an effective sampling rate of 1.25 kHz. For these
reasons, we chose to use individual A/D converters for each channel. While this raises the cost, it
means that all channels can be triggered to sample simultaneously, retaining the full sampling
rate of the analog to digital converter.

Because the sampling rate is software configurable, we also needed to have a user-programmable
anti-aliasing low-pass fdter on each channel. This was accomplished by using a switched-
capacitor analog filter with digital control. I/O pins from the processor were used to set the filter
cutoff frequency as appropriate for the user-configured sampling rate.

See Figure 5 for an overview of the Vibration DAC architecture.

-J "5

Sample Rate
Hardware Filter

Gains
Hardware Filter

Frequencies

Digital Filter
Coefficients

Process Data
(User's Logic)

Digital Fitter
(optional)

„
Read Data Write Data

_l L

A/D Converters CAN Transceiver

Analog Filters
Flash

(Calibration
Factors)

Ethernet
Transceiver

Node Tool
(or other host)

Node Tool
(or other host)

Figure 5. Vibration DAC Architecture Overview

Given the requirements for the DAC, it was decided to partition the software into several tasks
executing in parallel. See Figure 2 for an overview of these tasks.

RM&ASC22

• MATLAB Task - Runs the user's MATLAB-generated algorithm at a rate specified by
the user. The system was designed to support up to four MATLAB tasks.

• Ethernet ISR Task - Dedicated to reading and writing data from/to hardware registers.
Communicates data packets with Ethernet task through transmit and receive queues.

• Ethernet Task - Processes data generated by the MATLAB tasks. Communicates data
packets to/from Ethernet ISR task through transmit and receive queues.

• CAN ISR Task - Dedicated to reading and writing data from/to CAN hardware registers.
Communicates data packets with JI939 task through transmit and receive queues.

• JI939 Task - Processes data generated by the MATLAB tasks. Communicates data
packets to/from CAN ISR task through transmit and receive queues. This task also
accepts analog channel calibration values over the J1939/CAN bus and writes them to
flash memory.

• ADC Task - Dedicated to triggering the A/D converters at a rate specified by the user.
Reads the converted data and places in channel buffers, where it can be accessed by
MATLAB tasks.

• Debug Task - Sends raw analog and digital input data over the JI939/CAN bus to an
external RIT tool that calculates channel calibration factors. This task will run only when
enabled by the tool.

• Idle Task - This task runs only when all other tasks are idle. It will initially do nothing,
but is available for future use.

The Texas Instruments SYS/BIOS real-time kernel was used to create and manage all of these
tasks.

RM&ASC23

Trans
register

Driven by interrupts
from Trans & Recv

registers

Reads packet from
Recv register, puts

in Recv queue

Gets packet from
Trans queue, writes

to Trans register

Recv
queue

Trans
queue

Ethernet Task

Sleeps, awakes
every 5 milliseconds

Sends and p
packets, similar to
J1939 task.

TX
register

CAN ISR

Dnven by interrupts
from TX & RX

regrsters

Reads packet from
RX register, puts in

RX queue

Gets packet from
TX queue, writes to

TX register

RX
queue

TX
queue

Sleeps, awakes
every 5 milliseconds

Processes incoming
packets: debug pkt,
calibration pkt, addr
daim pkt

Sends addr daim
pkts, short and long
message pkts.

; packet p*

Debug Task

Sends raw analog &
digital values if
enabled

MATLAB Task ^

Runs at a specified
rate

Contains user's
logic

Idle Task

Automatically run by
the micro-kernel
when no other

threads are running.
RIT can add list of
fundions to be run

from this task

j drcular
1 buffer

circular
buffer f

ADC Task

Driven by timer
interrupt.

goal is to run every
10 microseconds

AOC1 >-l accel

ADC2 >^ accel

ADC 3 >H accel j

ADC.) i-i generic

Calibration
fadors in flash

Figure 6. Vibration DAC Software Architecture

Writing algorithms in MATLAB and generating embeddable code was researched and a detailed
workflow concept was developed. This workflow concept was used to generate all MATLAB
algorithms for this project. All algorithms were developed and tested with MATLAB R201 la.

The following is an overview of the generation of MATLAB code.

1. Write and test the desired algorithm in MATLAB.
2. Create a MATLAB function containing your algorithm. This function will call DAC

library functions to acquire channel data and send calculated results.
3. Write a single initialization function in MATLAB. This function will configure the

sample rate, gain, and cutoff frequency for each analog channel.
4. In MATLAB, generate C code for each of your functions.
5. Compile and link the generated code in Code Composer Studio.
6. Download your compiled code to a vibration DAC and test.

Tests were conducted on a sample of MATLAB generated algorithms, comparing the processor
cycles used by a fixed-point processor and a floating-point processor. The processors chosen for
these tests were a Texas Instruments TMS320DM6437 fixed-point processor and a Texas
Instruments TMS320C6748 floating-point processor. These processors were chosen because they
are typically used in embedded projects and they are currently in production.

RM&ASC24

Figure 7. Vibration DAC Printed Circuit Board

Identical algorithms were used in both sets of tests. All algorithms were generated using
MATLAB R2011a and were compiled with Texas Instruments Code Composer Studio 4.2.

Results
The prototype vibration DAC was evaluated in our lab using
various algorithms generated using MATLAB R201 la. The
generated C code was compiled with Texas Instruments
Code Composer Studio 4.2.

• Timing tests showed that the fixed-point processor
chosen for the vibration DAC could not run the
MATLAB-generated floating-point code efficiently.

• A single processor had to do all of the work (running
MATLAB code, data acquisition, CAN
communication to/from the host, and micro-kernel
overhead).

• We were unable to achieve the desired 100 kHz

sample rate. The best we could achieve was 20 kHz.
Sampling any faster caused the CAN and task threads
to "starve." This was true even after increasing the external memory interface to its
maximum speed and turning on processor data caching.

• We were unable to truly achieve simultaneous sampling on all channels. In practice, there
are several microseconds between each trigger of the A/D converters.

• The vibration DAC often could not "keep up." For example, when calculating a 512-
point FFT once every 2 seconds and sending the results (257 half-precision data points)
over the data bus, only about half of the data packets were actually sent.

An alternative processor that might be a better match to the project goals is a Texas Instruments
OMAP-L138 dual-core processor, with the following features:

• Floating-point digital signal processor (DSP)
• ARM9 processor

• Xilinx Spartan-6 FPGA

Software modifications which would be recommended include:

• Use the DSP to run only the signal processing (MATLAB) code.

• Create four SPI ports with the FPGA that run in parallel and perform the entire data
acquisition loop in hardware, presenting the DSP with all the results at once and perfectly
synchronized.

• Use the ARM9 for all CAN and Ethernet communications.

RM&ASC25

This modified design approach would subdivide the tasks currently executed by a single fixed-
point processor and allow these tasks to be executed in parallel.

Developing "embeddable" algorithms in MATLAB is not straightforward and requires more than
a little knowledge of C programming and the ability to integrate the code generated by
MATLAB with the vibration DAC source code. Developing using MATLAB is possible, but still
requires the engineer to have a thorough understanding of the embedded target, its architecture,
and its limitations. In particular:

• The class (data type), size, and complexity (real or complex) of all data in MATLAB
must be specified so that MATLAB can generate proper C code. MATLAB supports
dynamic data typing and sizing, but C does not.

• In our experience generating MATLAB examples for this project, getting the MATLAB
function "right" so that MATLAB can properly generate code can take a considerable
amount of time. MATLAB generates many errors that must be debugged and corrected.

• MATLAB tends to allocate a lot of data on the stack (17,408 bytes in our FFT example).
This can lead to runtime errors that are very difficult to debug. We cannot know in
advance what algorithms a MATLAB engineer might write, so we cannot predict stack
sizes in advance.

• MATLAB generates many C files (typically about 20) that must be copied by hand to the
correct project subdirectory in Code Composer Studio, where they are compiled and
debugged.

Fixed-Point Processor Tests
The following tests were run for the TMS320DM6437 fixed-point processor. This is the
processor used on the vibration DAC.

For these tests, the C64x+ CPU Cycle Accurate Simulator (little endian) was used in the Texas
Instruments Code Composer Studio 4.2 IDE.

Table 3. Fixed-Point Tests.

Test Operation CPU
Cycles

Notes

1 1000 single-precision floating-
point multiplications.

70,025 Generated from MATLAB.

2 1000 16-bit integer
multiplications.

24,020 Generated from MATLAB.

3 1000 32-bit integer
multiplications.

22,020 Generated from MATLAB.

4 Compute 512-point single
precision floating-point FFT.

3,251,911 FFT generated from MATLAB.

5 Compute 512-point single
precision floating-point FFT.

3,180,879 FFT generated from MATLAB.
Same as test 4 above but without the

RM&ASC26

magnitude calculation.
6 Compute 512-point fixed-

point FFT.
301,819 FFT generated from Simulink.

7 Compute RMS of 512 single
precision floating-point
samples.

132,986 Generated from MATLAB.

8 Compute standard deviation of
512 single precision floating-
point samples.

160,080 Generated from MATLAB.

Floating-Point Processor Tests
The following tests were run for the TMS320C6748 floating-point processor.

For these tests, the C674x CPU Cycle Accurate Simulator (little endian) was used in the Texas
Instruments Code Composer Studio 4.2 IDE.

Table 4. Floating-Point Tests.

Test Operation CPU
Cycles

Notes

1 1000 single-precision floating-
point multiplications.

21,021 Generated from MATLAB.

2 1000 16-bit integer
multiplications.

24,020 Generated from MATLAB.

3 1000 32-bit integer
multiplications.

22,020 Generated from MATLAB.

4 Compute 512-point single
precision floating-point FFT.

831,345 FFT generated from MATLAB.

5 Compute 512-point single
precision floating-point FFT.

785,286 FFT generated from MATLAB.
Same as test 4 above but without the
magnitude calculation.

6 Compute 512-point fixed-
point FFT.

301,819 FFT generated from Simulink.

7 Compute RMS of 512 single
precision floating-point
samples.

58079 Generated from MATLAB.

8 Compute standard deviation of
512 single precision floating-
point samples.

66338 Generated from MATLAB.

The tests show that for floating-point operations, the floating-point processor uses approximately
60% to 70% fewer cycles than the fixed-point processor; fixed-point processors must emulate
floating-point operations whereas floating-point processors can perform these operations in
hardware. For fixed-point operations, both processors use the same number of cycles.

RM&ASC27

A floating-point processor is a better choice for the Vibration DAC. MATLAB and Simulink
generate floating-point code. The choice of a floating-point processor would allow the MATLAB
engineer to simply generate code without avoiding the use of floating-point and alleviate the
engineer from using the difficult-to-use MATLAB Fixed-point Toolkit.

■

Waveform Data Bus Protocol

Problem
The development of a low-cost data acquisition device capable of monitoring vibration created
the need to transfer these waveforms over a data bus to clients for further processing. For
example, clients can use these waveforms for condition-based monitoring, anomaly detection, or
failure mode analysis.

Goals
An objective of a related CIMS project was to develop a method for real-time vibration
monitoring and data collection for unmanned aerial vehicle (UAV) engines. An Asset Health
Monitoring system was implemented to calculate frequency data from the engine and record it in
a database.

Given this objective, the goal of this project was to develop a protocol for transferring large
waveforms over a data bus. This protocol would be used initially on the UAV engine monitoring
project, but could be used in the future on any project where it was necessary to transmit
waveforms over a data bus.

The protocol was designed for use with the J1939/CAN data bus. This data bus was chosen
because it is supported by RIT's data acquisition nodes and it is commonly used in both
commercial and military applications.

Approach
The metadata needed to describe the waveform data was considered, and it was determined that
the metadata should include:

• Sampling rate in hertz.
• Number of points per waveform segment.
• Data type (e.g., 16-bit integer, 32-bit floating-point, 64-bit floating-point) - to be

included only if the data type is variable.
• Scaling factor - to be included only if data is sent as an integer, to allow the consumer to

scale the samples back to floating-point.

J1939 standard messages are limited to 8 data bytes; this is too limited for the transmission of
waveforms, so J1939 long messages were used. Because J1939 long messages are limited to
1785 data bytes, the size of the data type chosen was important. IEEE 754 double-precision

RIVI&ASC28

floating-point (64 bits), single-precision floating-point (32 bits), and half-precision floating-point
(16 bits) were considered.

Half-precision floating-point was chosen because it provides the best balance between data
resolution and data size. There are 10 bits in the fraction and 5 bits in the exponent, with one sign
bit. This provides, on average, approximately 3.3 significant decimal digits per sample while still
retaining sufficient dynamic range for the vibration data being monitored in this experiment.

The decision to fix the data type at half-precision floating-point also eliminated the need to
include the data type and scaling factor in the metadata.

The protocol was designed to support both continuous waveforms (streams of data) and non-
continuous waveforms (periodic snapshots of data). Each of these collections starts with a header
that identifies it as continuous or non-continuous. The header also contains a protocol version
number, stream ID, sampling rate in hertz, a fragment number, the total number of fragments in
this collection, and the first set of data samples.

For non-continuous collections, the header is the only fragment sent and contains the entire data
snapshot. For continuous collections, the header is the first of many fragments. Subsequent
fragments do not repeat all of the metadata included in the header; they contain only the stream
ID, a fragment number (that increments with each fragment), and a set of data samples.

Results
The waveform protocol was implemented in RIT's second-generation four-channel DAC (a
producer of waveform data) and in our Asset Health Monitoring software (a consumer of
waveform data).

The DAC node used in the UAV engine monitoring project captured data on three analog
channels from a 3-axis accelerometer at a sampling rate of 3.2 kHz per channel. A programmable
timer and a digital encoder signal from a sensor mounted on the crankshaft were employed to
trigger a data capture; when the timer fired, the capture occurred on the next rising edge of the
encoder signal. The waveform protocol worked very well in transmitting the non-continuous
waveforms (snapshots) captured in this experiment.

While the protocol was designed to support continuous waveforms, in some circumstances it
may not be possible to send such waveforms over the bus. The limiting factors include:

• DAC node processor speed and workload (how fast can it capture and send data).
• DAC node memory (how much waiting-to-be-transmitted data can it store).
• Data transfer rate of the CAN bus (how fast can it transmit data).

The J1939/CAN bus supports a 250 kilobit per second data transfer rate. Discounting packet
overhead (64 bits per frame), the maximum theoretical frame rate of a fully loaded bus with full
data fragments (7 payload bytes) is approximately 1700 packets per second, or an aggregate

RM&ASC29

throughput of approximately 95 kHz. The maximum sampling rate possible depends on the size
of each sample. Using half-precision floating-point, this corresponds to an aggregate sampling
rate of approximately 6 kHz (for a single channel). This also assumes a 100% loaded bus; other
messages (particularly if they are of higher priority) must be reserved, further reducing the
sampling rate. This is part of the reason why triggered, non-continuous sampling strategies are so
important.

Users of the waveform protocol must keep these limiting factors in mind. When unable to send
continuous waveforms, we recommend that data acquisition nodes employ intelligent triggering
to acquire and send data snapshots. We recommend the use of one or more of the following
techniques:

• Triggering based on a timer.
• Triggering based on a digital input event.
• Triggering based on the receipt of a specific trigger message on the data bus.

Feasibility and Prototype of a USB based Interface for Vehicle Communications
(Compact Bus Interface)

Problem
Vehicle monitoring systems for modern commercial vehicles such as the MTVR have multiple
data bus interfaces, including J1708 and J1939. Current monitoring solutions (including those
used for EPLS) include internal bus interface adapters. This has a negative impact on bus
integrity because the System Health Node CPU cannot always be located close to the vehicle's
diagnostic bus. It also has the disadvantage of being tied to a specific computer bus architecture
(in this case, the legacy bus PC/104).

Goals
The main goal was to determine the performance and reliability of the proposed architecture,
which involved development of a prototype dual CAN + J1708 + Power Interface board that
communicates with a System Health Node CPU, followed by analysis of the feasibility of this
architecture as well as the suitability of commercially-based (COTS) hardware for this
application. This included designing a circuit board and building several samples as prototypes,
together with developing software to allow it to read the vehicle's data buses and forward live
vehicle data to the System Health Node for processing.

Approach
We would use a commercially available ARM-based microcontroller, develop a USB bus
interface, test it using protocol simulators as well as actual vehicles, and verify that its
performance meets expectations.

RM&ASC30

Results
A circuit board was built using an ARM7TMDI microcontroller. This microcontroller has two
built-in CAN channels as well as several serial ports, one that we adapted to communicate over
the J1708 bus. The J1708 protocol, as well as USB profiles, was implemented in C targeted for
this ARM processor.

Performance was measured, and it was determined that this is a feasible approach for next-
generation EPLS-like bus interfaces. The system was able to keep up with CAN and J1708
traffic comparable to that seen on the MTVR. Further performance improvements could be made
by implementing some rate limiting and filtering on the interface board (e.g., dropping repeat
messages); however, during our testing this did not prove to be necessary.

In terms of reliability, the USB bus was found to be very susceptible to typical noise and
interference in a vehicle environment. This noise often caused the USB host (on the main system
CPU) to detect errors and disconnect the bus device. It was not always possible to reset the
device in software; occasionally a full system reboot or power cycle was required. We believe
that this does not disqualify the idea of a USB interface to the vehicle data bus, but careful
attention must be paid to noise immunity (cable shielding and ground practices, as well as close
attention to impedances and EMI filtering).

Feasibility of Running AHM on Low-Cost ARM Based Hardware Running Linux

Problem
Asset Health Monitoring (AHM) deployments to date have run on embedded PC architecture,
including PC/104 and PC/104 Plus, as well as single-board x86 computers (e.g., Intel Atom
chipset). These architectures have advantages during development, but at the expense of higher
cost, larger size, and greater power consumption/dissipation than a more fully embedded
solution.

Goals
The purpose of this project is two-fold:

• Determine the feasibility of an alternate approach: rather than running asset health
monitoring software on a small PC, run it on a more capable fully embedded platform
similar to a modem cell phone or tablet processor.

• Determine the benefits and pitfalls of such an architecture by building a demonstration
system and testing it in a realistic mobile environment.

Approach

Requirements Development
A set of requirements was developed. Rough, high-level requirements include:

RM&ASC31

• Low projected volume cost (<$200 system).

• Wireless communications: Wi-Fi and Cellular communications; optionally support
Bluetooth if practical.

• Vehicle communications: OBD-II (legacy and CAN), J1708, and J1939 (CAN).
• GPS Receiver.
• Power: 12V and 24V DC in. Total power consumption < 1 watt.

• Ability to run AHM software.

CPU Selection
We selected the BeagleBone1 development board, which is based on the Texas Instruments
AM3359 ARM Cortex A8 superscalar architecture microprocessor. It was chosen, in part, to
shorten the development schedule and allow us to focus our hardware efforts on the vehicle and
communication interfaces required by our application. However, because the BeagleBone is
"open" hardware (meaning that full schematics and design data are made available to the end
user) the capabilities of the board can be integrated into our own design on our own custom
hardware. This would lead to a smaller, more cost-effective design path for a future, production-
volume asset-monitoring solution.

Vehicle Interface Board
We designed and prototyped a vehicle interface circuit board, including power supply, CAN,
J1708, and OBD-II interfaces. This board included a six-axis accelerometer, GPS receiver, and
circuits implementing the low-level OBD-II physical protocols for all manufacturers of U.S. sold
vehicles.

Communications Interface Board
We also created a wireless circuit board that included a Wi-Fi/Bluetooth module and a Mini PCI
Express cellular modem slot.

Results
The hardware architecture was shown to provide a robust software development environment.
Base operating system configuration was similar to our previous work on x86 architectures, so
the transition to ARM was relatively straight-forward. Most of the key open source software
components of the AHM system were available for the ARM as installation packages, allowing
us to integrate familiar components like gpsd (GPS interface) and ntp (time synchronization)
with little effort.

AHM software was installed and run with simulated and actual vehicle data, proving that the
ARM hardware can run the monitoring software as effectively as larger, much more expensive
x86 solutions (such as PC/104). Typical AHM operation used less than 30% of the CPU capacity
of the ARM even at high load. The SDIO based storage solution proved to have high enough

http://beagleboard.org/bone

RM&ASC32

write performance to effectively be equivalent to or better than previous PC/104 implementations
ofAHM.

Figure 8. BeagleBone with RIT's Vehicle Interface Cape showing

Communication to the cellular radio and GPS both proved to be seamless and reliable. Our
vehicle data bus interface (OBD-II) design included support for modern (2008 and newer) and
legacy (prior to 2008) vehicle bus standards. Each OBD-II bus type (J1850 PWM, JI850 VPW,
ISO 9141-2, and CAN) was tested against sample vehicles for each bus, and communications
were shown to be reliable, proving the feasibility of the integrated ARM/OBD-1I design.

Challenges included integration of :he Wi-Fi module. This device was chosen Wi-Fi module was
selected because of its supposedly "seamless" integration with the processor. This device
provided challenging to configure, n part :ecause the "stacking" nature of the BeagleBone does
not provide sufficiently controlled impedances for reliable communication. We identify this as a
potential area of continued development, as we believe the problem would be solved by
integrating the CPU and Wi-Fi on a single, impedance-controlled circuit board.

OBD-II Implementation

Problem
Previous Asset Health Management (AHM) efforts focused on monitoring expensive and high-
value platforms utilizing heavy-duty engines. These platforms either have existing data buses
such as J1939 and J1587 typical on heavy cuty vehicles both within and outside the military, or
they are high enough value to justify the benefits of adding a data bus, such as Light Armored
Vehicle (LAVs).

Computing technology improvements have drastically reduced the cost, size, and power of on-
board computers while increasing their capabilities. Systems that cost thousands of dollars 10

RM&ASC33

years ago are available today for only a few hundred dollars, and have made deployment of the
same heavy-duty AHM technology on light-duty non-tactical military vehicles a feasible option;
however, many of these vehicles use the Onboard Diagnostics bus (OBD-II), specified by SAE
J1979 and required by law on light-vehicles.

Goals
• Produce an OBD-II data bus interface capable of running in AHM on the low-cost AHM

hardware platform. Ideally the implementation can also run on COTS low-cost platforms
such as ARM processors and Android mobile devices.

• Ability to request current powertrain data, such as RPM, speed, throttle position, etc., at
the fastest possible speed from the vehicle.

• Ability to request for current active Diagnostic Trouble Codes (DTCs), as well as
pending and "permanent" DTCs, and associate freeze-frame data.

• Support the three pre-2008 OBD-II protocols as well as the 2008 and later CAN-based
OBD protocol. In particular, support the "Multi-PID" request format on CAN-based
vehicles to increase data rates by 6x.

The ultimate goal is to support not only existing AHM diagnostic capabilities, but collect the
data required to add the additional functionality of monitoring fuel economy, a focus for light-
duty non-tactical vehicles.

Approach
Implementation based on the SAE J1979 specification, and verification of real-world behavior
on multiple light vehicles, such as a model year 2004 Honda CRV, 2005 Honda Element, 2008
Honda Fit, 2004 Volkswagen Passat, 2000 Dodge Grand Caravan, 2003 Jeep Liberty, and 2010
Volkswagen Golf. Simulators based on data collected from these vehicles provided a quick way
to test code in development against pre-CAN format OBD data and CAN format OBD data.

Most data was collected using COTS hardware; however, some testing was done with the low-
cost hardware prototype board which had the same "STN" chip found in the COTS variant. This
chip is compatible with the protocol implemented by the "ELM" OBD-II interface chip, which
initially became popular in the hobbyist community. The STN is a higher-quality, but
compatible, chip aimed at commercial and embedded markets. These chips implement every
possible physical layer for OBD-II interfaces, thus we need only be concerned with the
communication with the vehicle ECU.

To allow running the code in multiple environments and not be tied to AHM, the code was
implemented as a lightweight library separate from the AHM framework. Incoming data is
parsed and published as events to any software modules listening for the events. When integrated
with AHM, an AHM function listens for these data events and translates the data into AHM data
streams which can be processed normally by AHM functions.

RM&ASC34

Additionally, the requesting of data was separated from the processing of data, which simplified
the design and made testing easier.

Results
An OBD interface meeting the goals was produced. The interface was tested via simulation as
well as real-world prototype usage in two applications:

1. A prototype low-cost, ARM-based system running Linux and the full AHM technology
with the OBD interface, and an AHM application to record the data on a Honda CRV.
The hardware is discussed in the section "Feasibility of running AHM on low-cost ARM
based hardware running Linux."

2. An Android smartphone using a COTS Bluetooth OBD adapter on a variety of vehicles.
A small Android-specific application was made that ties the generic OBD interface code
directly to the AHM Flat File Database system to record the data without pre-processing.

Future work opportunities include:

• Development of new algorithms specific to fuel economy and driver behavior, not only
for gasoline vehicles, but focusing on novel areas in alternative fuels (electric, hybrid,
biodiesel).

• Configuration of existing AHM algorithms such as (sensor fault detection) for light
vehicles.

• Development of production-ready system and testing on a large fleet of vehicles.
• Support for reading OBD test results.

It is also possible without excessive work to port the full AHM functionality to the Android
operating system; in particular, the ability to run AHM on Android COTS systems is a
compelling future option for several reasons:

• Their low cost and increasing popularity means that staff may be already carrying them
for other purposes; thus AHM can be added to vehicles with only an incremental
hardware cost to interface with the OBD-II bus simply by running AHM as an "app" on
the device.

• Ability to use the additional data sources typically found on such devices:
o Accelerometer/gyroscope to monitor driver behavior for both safety and fuel

economy.
o Barometer to measure air pressure (improves context of fuel efficiency).
o GPS for location, from which the user can acquire temperature and wind via

weather lookup to provide context that includes fuel efficiency
(headwind/tailwind, etc.).

RM&ASC35

Flat File Database System for Real-time Health Monitoring Applications

Problem
Embedded Asset Health Management (AHM) systems record a large amount of data constantly
while they are powered, and they typically operate in an environment which is susceptible to
sudden power loss. This situation leaves little time for database recording and for maintenance
operations to be performed on the database.

The existing system utilizes MySQL, a relational database management system (RDBMS). This
is a well-known and understood commercial off-the-shelf (COTS) product for general purpose
data storage, and most typically is designed to run on the server. We use the MylSAM data
storage engine in MySQL, which does not support transactions but gives the best write
performance and best ability to control database size. However, the lack of transaction support
means serious reliability problems result when sudden power loss occurs.

The main benefit of using MySQL, and RDBMS in general, is that is they utilize the standard
SQL protocol for accessing and modifying the data. The same technology in the embedded
system can also be used to communicate with enterprise servers, where SQL-based RDBMS
makes sense and is commonly deployed in that setting.

Although we have done much research on space management with MylSAM specifically, and
reliability in MySQL by keeping the database open on disk for the minimal amount of time to
reduce the likelihood of corruption on power loss, we have hit the limits of capability that
MySQL can provide to us.

We aim to drastically improve on a number of issues we have with the current solution:

1. Reliability - When MySQL crashes, whether via power-loss or other means, MylSAM
formatted database tables containing data collected across all missions can be become
corrupted.

2. Space Management - Deleting rows does not free disk space or necessarily prevent the
database from growing, and in fact does not in many "opaque" database formats.

3. Overhead - MySQL runs as an external daemon (server) process, which increases
startup time, memory usage, and CPU overhead by using the TCP networking protocol
even though client and server are on the same machine.

4. Data Density - Data density (records stored per byte) in MylSAM formatted MySQL
databases is already quite competitive against other RDBMS, but as a general purpose
solution the majority of space used still resides in data indexing on primary keys.

5. Replication - MySQL has a built-in replication mechanism, but it is designed for
keeping two highly available servers synchronized and is not well suited to the
embedded/disconnected monitoring problem.

6. Licensing - MySQL in certain cases requires per-unit licensing fees.

RM&ASC36

Goals
• Simple - The file format should be easily described, read, and manipulated.

• Compact - Improve bytes per record compared to existing solution.

• Reliable - Errors must be detectable and ignorable. An error such as
missing/added/modified bits in a file must not prevent the rest of the file from being
interpreted.

• Robust - An error in the data storage in one mission should not affect data from other
missions or prevent recording of new missions. A clock reset while powered off should
not prevent recording of further missions nor eliminate the knowledge of the order of
missions. The solution must also be tolerant of system power loss.

• Fast - Minimize disk writes and CPU utilization.

• Portable - Implementation should as portable as AHM itself.

• Standalone - Reduce complexity by eliminating dependency on an external daemon.
• Licensing - Prefer open-source products with no per-unit licensing costs if possible.

Approach
After consideration of other solutions and existing problems we chose a binary flat file solution
consisting of data chunks wrapped in frames to allow detection of corruption and recovery of
unaffected blocks from corrupted files. While we selected a binary file format, we wanted to re-
use open formats as much as possible, so the binary format is defined using the Google Protocol
Buffers Format (Protobuf).

The designed solution also allows the database to be split up into "slices," which allows for
varying data synchronization techniques. This is discussed further in the section "Flat File
Database Data Receiver and Platform Data Synchronizer."

Results
The technology selection addresses the following goals:

• Simple - Code generators exist for many languages to read protobuf format files into an
object format.

• Portable - Implementations to read/write exist for many languages, with primary support
for Java, C++, and Python, which at least one of those options is available on virtually
every platform today.

• Standalone - protobuf is a code library that can be used as part of an existing program;
thus a separate software installation and running server is not needed.

• Licensing - Google's implementation is BSD-licensed, and third-party implementations
for other languages are typically likewise liberally licensed.

The goals of compact, reliable, and fast will be addressed in the benchmark evaluation.

RM&ASC37

Benchmark Evaluation
Operating on the embedded platform, we find, compared to MySQL, that:

• The system is able to recover from a crash or power-loss in only a few seconds or less.

• The storage required on disk drops by 64% if we consider MySQL binlogs only, or by
83% if we include both database and binlogs.

• The data required to be transmitted (after compression) drops by 22%.

• CPU effort (time * usage) to create a new database is reduced by 85%, time by 93%.

• CPU effort to load data into the database is reduced by 96%, time by 99%.

The following graphs detail the results of a benchmark of the AHM drivers for MySQL vs. the
protobuf-based flat file implementation for writing 10k or 100k records. The minimum value is
taken over several runs.

^

.^

^
^

Effort

Test

v

■ MySQt(lOk)

■ MySQL (100k)

ProtoBuf (10k)

■ ProtoBuf(lOOk)

Figure 9. Effort Benchmark.

RM&ASC38

Disk Usage
8000
7000

„ 6000
| 5000
^a 4000
= 3000

2000
1000

0
MySQL
(10K)

MySQL
(10K)

binlogs

ProtoBuf
(10k)

MySQL
(100k)

MySQL
(100K)
binlogs

MultiDriver

MySQL
(100K)

binlogs tar

ProtoBuf ProtoBuf
(100k) (100K) files

tar

Figure 10. Disk Usage Benchmark.

Flat File Database Data Receiver and Platform Data Synchronizer

Problem
The updated Asset Health Management (AHM) system can use a binary flat file to store data as
an alternative to SQL-based relational database management systems (primarily MySQL). With
the data stored, a data transfer and synchronization process is required to replace the existing
MySQL replication and/or MDS (Maintenance Data Synchronizer) method.

Goals
The primary goal is to replicate the MDS functionality, but reading from the fiat file repository
instead of the single-vehicle SQL database. We also wanted an improved user interface that
allows for managing large fleets of vehicles and better reporting and guidance for errors,
something MDS was not able to do. The original SQL writer backend from MDS was reused.

• Automatic upload of data from monitored platforms.

• Automatic synchronization of uploaded data into a multi-platform master database.
• Design for scalability to allow management of large fleets.

• Minimize administrative time by focusing interface on platforms with synchronization
problems.

Approach
An overview diagram of the data management architecture:

RM&ASC39

Data Collection System, installed on Monitored Asset

Asset Health Management (AHM)
(Data Processor)

-Raw Data>
Data

Processing

' Receiver System

Receiver
(web service,

typically HTTP/
XML)

Raw and
-Processed*

Data
Flat File Writer

Flat File
-(multiple

streams)
Staging Area

Completion or recovery
T

Completed
Area

Sender
(in AHM or
separate on

same machine)

Network Transfer
(wifi, cellular, wired, etc.)

Certain slices may transfer over different methods

Files and index
information

Synchronizer System

Platform Data
Synchronizer

(PDS)

Receiver, synchronizer, and Asset Database
may be on the same machine or different

machines

Multi-Asset Database f
(typically SQL)

Figure 11. End-to-End Flat File Architecture.

Asset Health Management System
The AHM system (previously developed) collects raw data on a monitored asset and outputs raw
sensor data as well as processed diagnostic, health, and summary data.

AHM Flat File Writer
The driver writes collected operational data in the form of "missions" and slices and segments
within those missions.

AHM Segment Sender
The segment sender connects to the PDS (Platform Data Synchronizer) receiver web service
when a network connection is available.

The segment sender is not the only method to transfer data. Each data segment file stands alone,
so it can be transferred to the receiver via alternative networks or manually via physical media
transfer such as USB storage devices.

Platform Data Synchronizer Receiver
The PDS receiver implements a RESTful web service over HTTP protocol, exposing a repository
of AHM data segments, allowing for embedded platform upload (storage) and download
(retrieval) for synchronization or analysis.

RM&ASC40

Platform Data Synchronizer
The PDS tool observes the data segment repository managed by the PDS receiver and
synchronizes (writes) the data into the already existing enterprise fleet storage format (SQL
Database revolving around M1MOSA-CBM standards). It is also the only directly visible
component to the AHM system for managing health data collection and synchronization.
Additionally, PDS provides functionality to detect and guide administrators through problems
and their solutions, such as:

• Invalid credentials (username/password) in the segment sender on the embedded
platform.

• Mismatch between embedded node and platform assignment. The PDS Receiver ensures
that a particular node only transmits data for the platform it is known to be installed on,
as a security precaution and also as a data integrity to prevent multiple nodes from
declaring that their data is for the same platform.

• Errors in the data recorded (such as sensors not known to exist to the fleet storage
system).

• Network connectivity problems with PDS receiver or fleet storage system.
• Vehicles that have not reported data in an abnormally long period of time.
• Missing data segments.

• Platforms deployed to the field but not recorded in the fleet storage system.

(Vehicles | Segments | Repository Lop j PDS Log [ProDlems |

Filter: | Show be tag: Ail Vehicles

Title ID Status i AutoSync Last Mission... Last Mission... LastSync Last Segment Receive Age .. Tags
■ i, i J 1111 (_> ^r. i Lican valvo 3090 Unknown U [I.laint De ■ ■

SAIA 6666 6666 Unknown UJ [t.laint De
SAIA 6667 6667 UnVnown N [Maint De
SAIA 7902 7902 Unknown i—i [Haint De
SAIA B503 3503 Unknown U [I.laint De A
SAIA 3531 8531 Unknown [Maint De ■
SAIA 3689 3689 Unknovvn LJ n.laint De
8699 3699 Unknown '—' [I.laint De
J2007 12007 Unknown u [Maint De :
Cougar(ol<!; 1622341 Unknown [Maint De
PDS Test-2 2 Unknown —U—- 04/22/11 16:21 04/22/11 16:21 05/11/11 11:22 05/11/11 11:22 [PDS Test! T

Hi 1 fy

i Turn On Auto-Sync | \ Turn Off Auto-Sync \ 1 SetRecelve Age Limit | Clear Receive Age Limit ,

Figure 12. PDS Dashboard.

RM&ASC41

Unable to get list of vehicles from Maint.LV - PDS Problem

Unable to get Itof of vehicles from Malnt_LV

PDS had a problem scanning the master database for a list of vehicles (platforms).

Error Details (Stacktrace)

edu.lit,elms,NewAccess.OatabaseExceptlon; edu,rit,dins,sharedsetvlces,NoAvallableConnectlonsE>vt'
at edu,rlt,clm5,NewDrlvers.JDBCDrlver,JDBCDataLoaderHelper,doStatlcQuery(JDSCData^
at edu.rlt,cims,NewDnvers,JDBCDilver,JDBC&lcbalReadDriver.doStaticC!ue^ODBC&loba
at edu,rtt,clms,NewDrlvers.JDBCDnver,JDB(:5lobalRiiadDri-«r,getAllvehkle5(JDBCalobal
at edu,rjt,elms,PDS,vehideScanner,run(vehicleScanner,java:55)
at Java,utll.concurrent,ExecutorsiRunnableAdapter,cail(Executors,java:471)
at Java, util,concurrent. Future Task $Sync,lnnerRunAndReset(FutureTask,java:351)
at Java,util,concurrent.FutureTask,runAndReset(FutureTask.Java; 178)
at Java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.accesst
at |ava.util.concurrent.ScheduledThreadPoolExecutorischeduledFutureTask.runfSch
at Java.util.coneurrent.ThreadPoolExecutor.runWorketiThreadPoolExecutor.java; 11X0
at Java.util.concurrent.ThreadPoolEKecutor$Worker.run(ThreadPoolExecutor.java;603
atiava.lang,Thiead.run(Thread.java:679)

Caused by: edu.rlt.clms.sharedsen/kes.NoAvallableConnectlonsExceptlon; Cannot obtain a databa^
at edu.rlt.clms.NewDrlvers.JDBCOriver.ExtemalPoollngConnectlonManager.getConnecl
at edu.rit.clms.NewDrlvers.JDBCDriver.ExternalPoollngConnectlonManager.establlshSt ,
at edu.rtt.clms.NewOrlvers.JDBCDrlver.JDBCDataLoaderHelper.doStatlcQueivODBCData^
... 11 more

Caused by: com.mfcrosoftsqlserver.Jdbc.SOLSeiverExceptlon; The TCP/IP connection to the host hi
at com.microsoft.sqlseiver.Jdbc.SQLServerExceptlon.makeFromDrlverErroKUnknown
at com.microsoft.sqlseiver.jdbc.SQLSetverConnectlon.connectHelperiUnknown Sourc
at com.microsoft.sqlserver.jdbc.SQLSeiverConnectlon.loglnWIthoutFailoverlUnknown
at com.microsoft.sqlsen/er.jdbc.SQLServerConnectlon.connecKUnknown Source)

•\.
at com.microsoft.5qlserver.|dbc.SQLSeiverDhver.eonnect(Unknown Source)

Resolve

Retiy j Tiy to scan for vehicles again at the next scan Inteival.

Actions

n f Defer resolution of the problem; hide this window. The problem Is still accessible from
—HLJ the -Problems' tab.

Send a report of this problem, if the error includes a stacktrace, make sure the e-mail
E-Mail j contains the whole trace; some OS/e-mall clients silently truncate malls sent from this

program If they are too long. If this happens, please copy/paste the full error details.

Figure 13. PDS Problem Resolution Screen.

Results
The resulting system has been used successfully for autonomous transfer of data from platforms
into the multi-platform master database. The PDS dashboard provides a good view into problems
occurring in any part of the system (from the monitored platform, to the receiver, the
synchronizer itself, or the database), all from a single location. The most common problems of
connection issues and database version mismatch (between platform and master database) are
detected immediately and handled in a clear manner.

In terms of performance, the SQL writing backend is the bottleneck in a typical setup, and it is
the same as from the previous MDS tool. We investigated ways to speed up this synchronization
by investigating data-loading approaches that are proprietary to Microsoft SQL Server, rather
than the non-proprietary approach we used (Java JDBC PreparedStatements). We tried the
following methods:

• Batched PS: Create a SQL PreparedStatement for inserting, set parameters and call
addBatch, then executeBatch.

RM&ASC42

• Multi-Insert: Use new syntax in SQL Server 2008: INSERT INTO X (Cl, C2)
VALUES (VI, V2), (Yl, Y2), (Wl, W2)....

• Temp Table: DECLARE @MyTemp TABLE in same format as destination table, use a
multi-insert to load it, then INSERT INTO DMCalcNumData SELECT * FROM
@MyTemp.

• Union All: Multi-insert using the more compatible "UNION ALL" syntax: INSERT
INTO X SELECT VI, V2 UNION ALL SELECT Yl, Y2....

• Text Bulk: Write batch to a CSV file then use BULK INSERT. File may be placed on
local disk (SSD), ramdisk (RAM), or uploaded to remote server via UNC network path.

• Binary Bulk: Same as "Text Bulk" but write to binary file in SQL server's format and
use proprietary "fmt" file to describe it, then BULK INSERT.

The bulk insert methods only work well when PDS/MDS run on the same machine as the SQL
Server and when utilizing a "RAM disk" for temporary import storage. In this best case it is
possible to double-write performance. However, due to the large effort to convert the code base
to write binary bulk files, the fact that PDS/MDS would no longer be able to operate remotely,
and the technique being specific to Microsoft SQL Server, we decided not to deploy this solution
and remain with the existing batched PreparedStatement solution.

Multi-Source Signal Support in Asset Health Management (AHM)

Problem
Prior vehicle applications for the AHM system typically involved a vehicle with only a single
data bus or with no pre-existing data bus at all (for which one was added for the project).
However, newer vehicles in both military and commercial vehicles are commonly equipped with
multiple, existing data buses as well as multiple ECUs reporting the same data element even on
the same data bus. For example, the MTVR (Medium Tactical Vehicle Replacement) has both a
J1939 and J1587 data bus, and there is overlap in the data elements reported by these buses, as
well as multiple ECUs reporting the same data (e.g., vehicle speed).

The previous solution to the problem was not adequate. In J1587, AHM had the ability to map a
MID (identifying an ECU) and PID (data element ID) to a port (data streams); thus it was
possible to map each ECU to a unique port, but only if it was known in advance what ECUs exist
and which PIDs they report. For J1939, there was not an appropriate solution; the previous
solution would combine all reports from ECUs into a single data stream, as if it came from the
same sensor.

For the data streams that were separated (a single J1939 result and multiple J1587), it was
possible to build a combination function that selected the "best" source that would become the
primary element. For example, vehicle speed reports from three ECUs would be combined into
the final determination of "vehicle speed" reported by AHM.

RM&ASC43

To summarize, there were three primary issues with the multi-source support in the previous
software:

1. The number of ECUs and data elements reported by each must be known in advance of
AHM installation (specific to vehicle series).

2. Multiple ECUs on J1939 were not supported properly at all. In fact, on J1939, source
addresses of ECUs are not well-known and defined as in J1587.

3. The number of "redundant" ports is fixed and specified manually in the AHM
application.

Goals
Our goal for this project was to resolve the current problems by making AHM more flexible in
this situation. The following additional requirements allowed us to solve the problems:

1. The AHM application configuration does not need to know how many ECUs (from any
data bus) will report a particular data element, thus making the application applicable to a
wider range of vehicles by not needing to rely on specific knowledge about ECUs.

2. Each ECU's data will be mapped to a unique port.
3. AHM is able to dynamically create ports while running based on a template port

definition so that each ECU can have a unique port.
4. AHM will keep track of the source of data for the port, so that functions can ask "what

data bus did this port come from and what is the source ECU address?" and use this
information for selecting the "best" port.

5. AHM streams can be placed into groups, so that a function may ask for the data for all
streams belonging to a group.

6. AHM places all streams dynamically created for ECUs into a group for the data element
(e.g., all ports containing vehicle speed reports from ECUs placed into one group).

7. The intention is to combine all of the ECUs reporting a particular data element into a
single data stream, formed by selecting the "best" source at each particular moment.

The requirements all revolve around a fundamental shift in AHM data handling: instead of the
set of ports being fixed in the design, the set of ports is dynamic, created based on the number of
ECUs reporting particular data elements while AHM is running. This also means that the number
of inputs into a function changes while running when a function asks for a group of ports.

Approach
Evaluation of data collected on previous projects with the multi-source problem was analyzed to
ensure that the implementation would provide the features necessary to allow intelligent
combination of multiple sensors into the best guess at the true signal. Bus data captures from
these vehicles were used to test the implementation under simulation.

RM&ASC44

Results
We successfully implemented a system that solved the original problems and addressed all of the
goals for the updated system. The following components addressed this issue:

Stream Group Definitions
The AHM application configuration contains a definition for stream groups. Stream groups have
a name (such as "speed" or "rpm") and initially start out with no ports within. A stream group
has a template that is used to create new ports on demand for as many sources of information
arise during monitoring. For example, there may be 2x J1939 ECUs, 3x J1587 ECUs, and Ix
GPS unit reporting vehicle speed. Functionality exists in AHM to query for the streams in a
group and ask about the source of the information (such as bus type and ECU source address).

Updated Unified Function Architecture
The Unified Function architecture in AHM is a universal system of writing functions taking a
series of configuration parameters, inputs, and outputs. This architecture was enhanced with
inputs and outputs that can read from or write to stream groups. This structure is novel for the
AHM system as they are the first input and output types that change the number of data streams
(ports) while the system is running. In addition to the raw data, the inputs also return source
identifiers containing arbitrary information (at this time, bus type and source address). The
outputs are also given source identifiers and dynamically create new streams as new sources are
written. The source identifiers provide functions with a basis for discriminating their inputs when
faced with multiple choices for the same information (e.g., vehicle speed).

Updated J1939 and J1587 Listeners
The listeners are able to direct a certain data element (such as vehicle speed) at a "stream group"
instead of a singular port. When a new ECU reports, a source identifier is created with bus type
and address. As discussed earlier in the updated Unified Function Architecture, as new source
identifiers are created, new ports are created in the stream group.

Updated Sensor Fault Detection Functions
The multi-source signals provide a stronger case for SFD, because redundant sensor information
can be compared to find faulty sensors and come to a stronger conclusion for the true physical
state. The SFD functions were updated to read and write stream groups. For the most part, these
changes were easy as the SFD changes largely were simply adjusted to have the algorithms
applied in a loop for however many sources were presented to it.

New Sensor Selection Function
The additional information from port source information and SFD provided by the multi-signal
processing allows for an improved selection of a final source. For example, there may be 4 ECUs
and a GPS unit reporting vehicle speed, but the function should select the "best" speed. The
function considers the following when making the determination of the best source:

RM&ASC45

1. The type of data bus the data came from (such as J1939 or J1587). The J1939 bus is more
modern and often has higher resolution data reported at higher speeds.

2. Whether or not sensor fault detection (SFD) has detected that a particular source is faulty
or overly noisy.

3. The source address of the reporting ECU. An AHM application engineer may have done
a study on a vehicle to determine that a particular ECU has a better reliability or better
measurement of the data element. For example, perhaps engine speed (RPM) is reported
by engine ECU, transmission ECU, and brake system ECUs, and the engineer can set a
preference in that order.

4. The last source selected for the output.

Preferences are set by the application engineer. The function will try to select the same source
and stick with it; however, it will select a new source if it stops reporting or is marked by SFD as
having bad data. The newly selected source is selected by preference rules set by the application
engineer. For example, the following logic could be applied at each moment of time to combine
a group of speed sensors into a single speed-sensor output:

1. Select the stream that was chosen last time, if it is still reporting and valid (per SFD).
2. Otherwise, select the first reporting and valid of J1939 transmission or engine ECUs.
3. Otherwise, select the J1587 engine ECU, if it is reporting and valid.
4. Otherwise, select the first reporting and valid signal seen from J1939 data bus.
5. Otherwise, select the first reporting and valid signal seen from Jl 587 data bus.
6. Otherwise, select the first reporting and valid signal (such as GPS).
7. Otherwise, all signals are not reporting or invalid, so select the first such signal; the

resulting output would be marked as not reporting or invalid as a result.

DAC Node Graph Tool

Problem
The development of a Data Acquisition Node (DAC) capable of transferring waveforms (e.g.,
vibration data) over a J1939/CAN data bus created the need for a tool capable of receiving and
visualizing this data.

Goals
DAC Graph Tool was created to fill this need. Our goal was to use this tool in testing and
debugging of the waveform protocol itself, as well as the testing and debugging of the waveform
processing algorithms running in the data acquisition nodes.

Approach
DAC Graph Tool was developed to read waveform data transmitted on the bus using the RIT
waveform protocol developed for this purpose. It was developed in Java so that we could reuse
Java code from our Asset Health Monitoring software that receives and processes waveform

RM&ASC46

data. We also used the same Java graphics library used by our Maintainer's Graphical User
Interface (MGUI) Tool to display the waveforms.

Results
All of our goals were implemented. Shown in Figure 14 is a screen shot of the tool displaying
waveforms from a DAC node connected to a three-axis accelerometer.

DAC Graph Tool was developed to read waveform data transmitted on the bus using the RIT
waveform protocol developed for this purpose. DAC Graph Tool can display up to four graphs of
waveform data from different sources. The number of graphs to be displayed is configurable.
The titles for each graph as well at the labels on the X and Y axis are also configurable. Each
graph will update continuously as waveforms are received.

The tool also saves the waveforms it receives to CSV files. In our testing, these files were used to
capture raw and calculated waveforms transmitted by the RIT DACs. These waveforms were
imported into MATLAB to verify that IIR/FIR filtering algorithms and FFT algorithms executed
by the DAC node were correct.

This tool was used in the testing and debugging of the waveform protocol itself as well as the
testing and debugging of the RIT vibration DAC and the RIT second-generation four-channel
DAC.

RM&ASC47

_ OAQ Graph Too'

File Qptions

O 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Sample Number

YAxis
0,0 i

i
1 I
«

-0.1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Sample Number

Z Axis

SOU 850 900

Figure 14. Graph Tool displaying waveforms from a three-axis accelerometer.

DAC Node Programming Tool

Problem
Asset Health Management systems typically employ several data acquisition controllers (DACs)
to acquire and process data from vehicle sensors. The programming of these DACs requires an
engineer experienced in data acquisition systems and embedded programming in C, the language
most often used in the programming of embedded processors. Such programming is difficult and
requires detailed knowledge of computer programming languages and embedded programming
concepts.

Goals
The goal for this project was to develop a simplified DAC node programming tool (DAC App
Tool) that allows a complete DAC application to be written as a collection of simple graphical
"flow charts." This will allow application development with less dependence on embedded

RM&ASC48

software developers. A subject matter expert can develop embedded software with a simple drag-
and-drop graphical interface, and the tool will automatically generate appropriate embeddable
firmware for the target device.

Approach
The typical processing of a signal in a DAC node can be described simply as:

• Read a raw digital or analog value from a sensor.

• Process this value in some way; e.g., convert it to a pressure in kilopascals.
• Put this processed value in a data packet and send the packet on the data bus.

DAC App Tool was developed to allow an application engineer to perform this processing by
creating function block diagrams from a library of graphical function blocks. Function blocks are
available to read sensor values, perform arbitrary calculations, make logical decisions
(conditional branching), and send values on the data bus.

Overview
DAC App Tool was designed to support building and transmitting data packets on a J1939/CAN
data bus, commonly used in military ground vehicles. This bus is also in common use on
passenger and commercial vehicles.

App Tool supports a hierarchical project tree. A project typically contains several DAC
programs. A program is a complete application that, when compiled, is flashed to a DAC node.
A program contains one or more PGNs (Parameter Group Numbers), each representing a data
packet to be sent on the bus. A PGN contains one or more SPNs (Suspect Parameter Numbers),
each of which is a data value calculated from an analog or digital input.

Configuration
DAC App Tool is linked to a PGN/SPN database. This database contains the definitions of the
PGNs and SPNs that the application engineer will be allowed to configure in a DAC program.
This allows different databases, containing different PGN/SPN definitions, to be associated with
different projects.

App Tool also supports a configurable FIR or IIR filter of arbitrary order on each analog input
channel. If the application engineer chooses to use such a filter, App Tool provides an interface
for entering the filter coefficients.

Flowcharts
A SPN represents a data value that is calculated from an analog or digital input. This calculation
is represented graphically by creating a "flowchart" of function blocks.

A predefined palette of function blocks is provided. Function blocks come in four types: Get,
Calculation, Conditional, and Return.

RM&ASC49

A flowchart starts with a Get block that gets the current value of an analog or digital input. There
must be only one Get block per SPN.

One or more Calculation blocks are then used to perform arbitrary calculations on the value
returned by the Get block.

Conditional blocks can be used to make a true/false decision. This introduces branches in the
flowchart.

Finally, a Return block is used to indicate the value to be placed in the data packet and
transmitted on the CAN bus. Each branch in the flowchart must be terminated by a Return block.
There are three types. ReturnValue returns the calculated value. ReturnError returns a J1939
error indicator. ReturnUnknown returns a J1939 unknown indicator.

A flowchart represents a value "flowing" through the chart from left to right. The Get block
obtains a value. Calculation and Conditional blocks accept a value from the block to their left,
process it in some way, and make it available to the block to their right. The Return block places
this value (or an error/unknown indicator) in the data packet for transmission on the bus.

The function blocks available to the user in App Tool are listed in an external file named
Functions.xml. This design allows a different file to be used in each project, if desired, to control
the available blocks. This also allows new function blocks to be added if and when they become
available in the DAC application library.

Executable Program Generation
DAC App Tool stores each graphical program in a separate XML file, and stores a reference to
each of these program files in a master XML file. Each XML program file must be translated to
an executable program before it can be run on a DAC node. App Tool translates each XML file
to a C source file, compiles it, and links it with an application library. The application library
contains the code for all function blocks, as well as core operating system code for the DAC.

To compile a program from App Tool, the application engineer invokes a Compile command.
App Tool also supports a Compile All command that compiles all programs in a project. App
Tool was designed to call an external shell script to compile and link the C code; it is the shell
script that actually invokes the compiler and linker. This design allows the compiler or linker to
be changed by changing the script alone; there is no need to rebuild App Tool itself. App Tool
captures the errors, warnings, and informational messages generated by the compiler and linker,
and displays them within App Tool to aid in debugging. In this project, the Freescale Code
Warrior compiler and linker were employed.

After a DAC program has been successfully compiled, the engineer invokes a Flash command to
download the executable image to a DAC node. This image is copied to the DAC node over the
J1939/CANbus.

RM&ASC50

Results
DAC App Tool was successfully used to program the DACs on the Grizzly Light Armored
Vehicle. It was also used to program the DACs used for vibration analysis on a UAV (unmanned
aerial vehicle) engine and on an engine undergoing tests on an Engine Dynamometer. The DAC
nodes used with App Tool on these projects were RIT's second-generation four-channel DAC
nodes.

File Edit

I3Gri; rzl/ProiecUml
DAQlxml
□ PGN 65269
□ PGN 65276

Q Registers

Q 3PN 96
□ PGN 65313

[j Registers

D SPN 14059
□ PGN 65332
DAQ2.xml
□ PGN 65277
□ PGN 65336
DAQ3,xml
□ PGN 65271
□ PGN 65302
□ PGN 65303
DAQ4,xml

°- □ PGN 61444
■> [3 PGN 65190
<^ □ PGN 65263
n- i—^ P^KI acini

t □

\ a
o-
o-
o-

9 □

Name: Front Fuel Pump Input Current Draw
Description; Front Fuel Pump Input Current Draw

SPN 14059

□♦

Property alue
Class FunctionType
Name Polyl
Label
Info Calculates first degree polvnomial
3 7.1429
b -44,643

Figure 15. DAC App Tool Example

DTC Data Model J1939 and J1587 Listener Improvements

Problem
While our health monitoring system collected a variety of data from the J1939 and J1587 data
buses, we did not collect Diagnostic Trouble Code (DTC) data. The DTCs, or "faults," are
reported by the engine control unit (ECU). The ECU gathers data from a variety of sensors.
Occasionally sensors will trigger a fault report, usually indicating a performance or maintenance
problem that requires attention.

Goals
Our goal was to collect DTC data from the J1939 and J1587 data buses. DTC collection
enhances our health monitoring system in several ways; for example:

• We can provide fault information on display devices other than the vehicle dashboard.

RM&ASC51

• We can give context to sensor data analysis both before a fault becomes active and while
the fault is active.

Approach
Achieving this goal required several modifications to our health monitoring system. Every effort
was made to use common code, but since the J1939 and J1587 standards differ, some bus
specific modifications needed to be made. The changes are outlined in the following sections.

Database Changes
A common database definition was developed for DTC data. The DTC fields are:

• Port ID: Identifies the source of the data, JI939 PGN or JI587 MID.
• Time: The time at which the DTC was reported.

• Primary Code: The primary code of the DTC. A PID for JI939 and a SID for J1587.
• FMI: The Failure Mode Indicator of the DTC.

• Secondary Code: Optional field, not used in J1939/J1587. Provided an additional
discriminator for OEM codes.

• Occurrence Count: Optional occurrence count for a DTC.

DTC Data Model
A common data model was developed for both J1939 and J1587 DTCs. The data model contains
all the information defined for the DTC database record.

DTC Bus Packet Parsers
Separate packet parsers were developed for J1939 and J1587. The parsers decode the bus packets
and create DTC data objects for use by the health monitoring system.

Bus Listeners
Bus listeners are used to transform bus packets into data object that can be used by the health
monitoring software. The health monitoring system already contained bus listeners for both
J1939 and J1587. The bus listeners take packets off the bus, determine the packet type, and pass
the packets to the appropriate packet parsers which create the data objects. The bus listeners were
modified to recognize DTC packets and invoke the DTC parsers.

Results
The target platform for exercising the DTC processing was the Medium Tactical Vehicle
Replacement (MTVR). This vehicle housed both a J1939 and J1587 bus.

We successfully achieved our goal to collect and record DTC data from both the J1939 and
J1587 data buses. During our development, we use simulations that acquire bus packets from
files rather than a vehicle bus. The packet files are populated by capturing them from vehicle
buses, in this case, an MTVR. Using packet files known to contain DTCs, we were able to

RM&ASC52

confirm that the packets were parsed into DTC data objects, and those objects were successfully
written to the DTC database records.

Bus Data Analysis and Visualization

Problem
A good, cost-effective vehicle data-monitoring system takes advantage of the existing vehicle
infrastructure (sensors and data buses). The ability to quickly collect, interpret, and analyze the
existing information content on a vehicle (or vehicle family) greatly reduces the development
time of the overall monitoring system.

Goals
The objective of this project was to accelerate the assessment of the existing vehicle sensors.

Approach
To facilitate the assessment process, we identified the need for: 1) software for capturing data on
a vehicle during operation in a non-intrusive manner; and 2) software for parsing of the captured
data and transforming it into a compact summary in a user-friendly format. Information from
SAE J1587 and SAE J1939-71 specifications was consulted for data acquisition and analysis.
Lab VIEW and MATLAB were selected for data capture and data analysis, respectively. Excel
spreadsheet was selected for the user interface.

Results
The outcome is the toolbox containing two LabVIEW-based, data-capture applications (one each
for JI708 and JI939), two MATLAB applications (for parsing 1708 and 1939 data packets), and
the process for capturing the data and parsing the captured files into spreadsheet summaries.
Figure 25 and Figure 17 illustrate J1708 and J1939 report summaries, respectively.

■V I.■■;!<.r.. -I", ■■ 1,1. Offi.! EntUml JOHitKi^Oot

IS O.QSL/Tiptrbit

is i/smw/i.p.fe
EMin.WK.F^IEco.w™

a 0.05 kPa.'bit

8 O.S kPa/lirt

is o,oii]sgt|C/cit

iMn«lnt»fc«Maf-.)a;3»lP-e

Erjire Ccclarl Fillsr Del

I SS272 Tfinimii!

I IS encash bil

C kPa Tranimimon Cil PrasEura

-62 S li!«f5 Transmission Oil Laael rilpi/l

O bii Tf»nsnim«Mi Oil levai Coumc :,

° tit TF'tjmJiJM.ffiUdBiaiagaai '
-Z73 C TrantmiHitmaiT^Mratur.

n f ; J
1»T.

-rf
j-

—

j-J ■
<•> —t-1 —i—;

17/ MM . »» , ym ins r "aw , iss BIIIIM ,., Wvl

_HaStet 177 /iQ2b 3028. 3027 : 105". 102 . 185 ., 1^,84. 'Mi llli liliJn

(a)
'(b)

Figure 16. J1939 spreadsheet report: (a) masters sheet containing the PGN/SPN summary with linked sheets for
data samples; (b) one of the linked data sheets for a particular SPN (SPN = 177 in this case) with the return
hyperlink.

RM&ASC53

!LE UUi^a^ -j— _P!SL. 'VV"""

pjilngy Bufca ftMlff. amM

■ ■■^.l"''''^^,^^::::'^!',.,.

1A tngtMll

t»4 Ttunymtf ?>«■"■ QIWWM

n OiaflfKrttc Cod^Wjt Ofrcij|tr«()et Cwjnt Ti^

2J,8S

«)»<ntf PCt.u.-iiF[ji,tCi.'jn[TjiL't

TrwtMititi Syitcn Duqn«tM Cofl* and Otcw

liaa "T tssy.^. ■^n-HSSSSStes-
— i I:.,1-:

Bl_ *l„,f~.U~ g »i^je.

rc;

2iJ

« 23.75 [—
£ 150 200 250

Time i (sec)
300

W
WUW» PTC uw? H10 136 WO t6» WD iH

Figure 17. J70S spreadsheet report: (a) PID table with hyperlinks to individual MIDPID details; (b) example
MIDPID details - battery voltage from MID = 136, with the return hyperlink; (c) diagnostic trouble codes (DTCs).
Note: PID = Parameter IDentification character, MID = Message Identification.

Improved User Interface for the Maintainer's Graphical User Interface (MGUI) Tool

Problem
To support the data analysis tasks in this project, the existing version of MGUI requires
improved data analysis features, visualization of new data types, and improved report generation.

Additionally, the existing commercial charting library we used as the basis for the original
MGUI code was not receiving updates, had an outdated interface that made adding new features
difficult, lacked the chart types we wanted in future work, and had been acquired by a company
charging much higher prices.

Primary Goals
There were many goals for this work, many of them small convenience features or bug fixes
(more than 100 tasks). The most notable new features are:

• Update to a charting library that supports more graph types that we want to use,
preferably one that is free and open-source to eliminate licensing costs for development
or distribution.

• Drastically improve performance on viewing huge datasets by dynamically down-
sampling based on zoom level.

• Ability to add annotations and titles to charts that are preserved in image export and
printing.

• Ability to filter lists of collected missions based on data within.
• Ability to view multiple missions in the same graph.

• Ability to switch to view previous and next missions quickly without closing the charting
view.

• Ability to filter scatter graph data by time, giving the scatter plot a 3rd axis (x, y, and
time).

RM&ASC54

• Improved user interface: allow panning graphs with mouse or keyboard, and reordering
graphs.

Approach
Primarily, we solicited feedback from the data analysts that used MGUI on a daily basis to form
the user interface requirements. Iterative development and frequent collaboration with the data
analysts ensured that the most valuable features were implemented and implemented properly.

Results
All of our goals were implemented. Updated versions of this software were used both internally
at RIT and externally in support of the US Marine Corps Embedded Platform Logistics System,
and with the Solid Oxide Fuel Cell research efforts. Below are screen shots highlighting some of
the major MGUI improvements:

^ MGUI - LAV-583 - August 19, 2004 5:00 PM to 6;33 PM EDT

File Describe Options Vehicle Window Help

***hMno C-53-1 Ifd
i of i mWntfnH

August 19. 2004 SiOO PM to 6:33 PM ED"
^ [7] Filter Traversal

Figure 18. Mission navigation possible from graphing screen.

Mission Selection for LA\/-583

Find missions

[Vj Where vehide moved

12) Where alert

[7] Longer than

[10121: Fuel.,.] was ever hig.,

(minutes) 60

Remove

Remove

Remove

Mission Preview

1 mission
August 19, 2004 5:00 PM to 6:33 PM EDT

Add nev filter
41 "E anm

Index Start Time End Time Duration Time Source

A 25 18/19/04 17:00 |8/19/D4 18:33 ilh 33m 21s system

53 8/20/04 19:14 8/20/04 21:44 2h 29m 20s system

--

99 8/23/04 17:29 8/23/04 18:40 Ih 10m 57s system

101 8/23/04 19:21 8/23/04 20:50 Ih 28m 52s system

111 3/24/04 10; 15 3/24/04 15:18 5h3m2s system

126 8/26/04 14:25 3/26/04 16:29 2h3m56s system

143 10/18/04 15:03 10/13/04 17:01 Ih 57m 56s system

144 10/20/04 13:43 10/20/04 15:05 Ih 21m 34s system

145 11/12/04 15:32 11/12/04 16:43 Ih 10m 28s system

160 12/7/04 10:47 12',7/04 19:15 8h 27m 59s system

168 12/3/04 14:47 12''8/04 16:17 Ih 29iin 35s system

«Back

Q High

A

AirBox Outlet Pressure

AirBox Outlet Pressure

1m 55s

Turbo Outlet Pressure

Turbo Outlet Pressure

ImOs

Engine Oil Pressure

Engine Oil Pressure

4m 15s

L 1-Planetary Temp

Ll-PlanetaryTemp

5s 0ms

Q Low

SERVICE_A1

SERVICED 1

11m 0s

SERVICE_B1

SERVICE.Bl

30s 0ms

ENG STOP OK 10s 0ms

Select Mission(s) »

Figure 19. Mission selection window mission with filters.

RM&ASC55

Platform 521583: LAV-583

Multiple initjno«$ of high all pitfCur*

^^^4
f*^s>*S*r\

60m Ot 60m 10s 60m 20s 50m 30s

— Port 14019; OllPr (kllopascal)

50m 405 5Dm 50

I

jiiajag on ure

50 m 0$ 50m 10s 50 m 20s 50m 30s 50m 40s 50 m 50

Figure 20. Display of new annotations and titles features.

RM&ASC56

Q RPM vs Speed

55

45

40

35-

30

25 {

20

15

10

5

0

•t i < ', ^ i-

•i i i <-

. • ■' - '-"■■

a*^ ■ "JSP?"'' *■" ■ ■r' ^ *-'•■ "ff .:

550 560 570 580 590 600 610 620 630 640 650 660 670 680 690 700 710 720 730 740 750
Port 14007: ERPM-STEICE (Revolution Per Minute)

■ Port 84: ODOSpeed (kilometer Per Hour)

46 m 10s 50m0s 50 m 50s 51m40s 52 m 30s 53m 20s 54m 10s 55m Os 55 m 50s 56 m 40s 57m30s 58 m 20s

Figure 21. Updated scatter plot with time axis. Zooming on the time axis changes the points displayed. Zooming on
Xor Y axis updates highlighted regions in the bottom graph. This allows relating points to time in either direction.

Live Mission Data Viewing of Asset Health Management (AHM) Data in the
Maintainer's Graphical User Interface (MGUI) Tool

Problem
The Maintainers Graphical User Interface (MGUI) tool was originally intended to be a utilized
for post-mission viewing of data collected with the Asset Health Monitoring (AHM) system.
However, it was determined that the same tool could be extremely useful for viewing data while
the AHM system was collecting data in real-time. This is both useful for a maintainer validating
a problem in real-time, as well as a developer validating that a new algorithm function is
working properly during simulated missions.

Goals
The goal is to modify MGUI to view missions that are in progress, specifically the ability to
update graphs as new data is coming in for the mission. Previously, MGUI could view an
ongoing mission, but it would only see data up to the point at which the mission was loaded by
MGUI. In order to view newer data, the user would need to exit back to the mission selection
screen, select the same mission again, and reload the appropriate graphs for analysis.

RM&ASC57

Approach
The MGUI code was modified to allow the tool to load new data as it was loaded into the
database. Previously, all mission data was loaded when the mission was selected. Thus for an
ongoing mission, the data would only load up until the mission was selected and MGUI would
never view any of the new data as the database was populated. To do so, the system would query
for the new data at a given interval, e.g., once per second. New data was determined based on the
last time data was loaded in order to prevent reloading the same data over and over. After new
data arrives, the graph is repainted to show the new data. This approach minimizes data loading
while providing the user with the most recent data available for evaluation and decision making.

Results
MGUI is now capable of displaying data as it is received into the AHM system. This obviously
requires MGUI to be connected to the system running AHM. This feature has been most helpful
for validating features and debugging problems with new algorithms under development for the
AHM system. This was especially useful as some missions required either running the simulated
data to completion or ending the simulation before validating the results. The simulation can now
be ended at the point where a problem occurs or the desired result is validated, thus allowing for
shortened development times.

Data-Driven, Supervised Anomaly Detection

Problem
Given large amounts of vehicle, machinery or process data, we identify and use storage, access,
and analysis techniques for supervised anomaly detection. Effective anomaly detection is the
first step in implementing diagnostic and prognostic systems via data processing, data mining,
and machine learning. The supervised, data-driven approach shown in Figure 22 is based on our
experience with analysis of vehicle failures, in which empirical investigation is impossible due to
the expense of commercial or military vehicles and their limited availability. We identify failures
and study the data and anomaly detection methods, with the ultimate goal being the creation of
failure libraries from which diagnostics and prognostics can be created. ONR can use these
results to enhance development of production-quality diagnostic and prognostics. These will
simultaneously reduce the costs of maintenance and unexpected failures of vehicles and other
machinery.

Goals
1. Investigate use of maintenance data, vehicle Diagnostic Trouble Codes, and Asset Health

Monitoring Alerts to obtain ground truths for machinery.
2. Investigate anomaly detection techniques for identified faults.

Approach
Our approach comprises the following steps:

RM&ASC58

1. Identify candidate failure events;
2. Use visualizations to understand the associated signals;
3. Select and train models that yield an anomaly metric;
4. Compare the performance of the models.

For this work we used vehicle data such as vehicle speeds, pressures, temperatures and position,
collected from 9/2009-7/2010 for approximately 100 commercial vehicles (see Vehicle Data
Warehousing and Analytics for more details). In addition, we had maintenance data for 24
vehicles for the period 1/2010-11/2010. We examined the maintenance records by reading the
details to find failure events relevant to the engine, transmission, and braking systems. We found
a single failure with sufficient data to analyze with this method. We also used vehicle diagnostic
trouble code information to find events.

Through this process we confirmed the event identified by reading the maintenance records and
found a series of similar events for a vehicle for which we had no maintenance records. The
signal visualizations provided the information we needed to prepare the data for building the
models and to understand the vehicle processes. We selected models from numerical analysis
and machine learning fields. We selected classification models, which are purely data-driven and
require no engineering insight, as well as regression models for which some engineering insight
is required. With this approach, we trained several models, compared the results, and were able
to identify a difference in performance for the two model types.

Results
Two general classes of oil pressure anomaly detection methods are investigated: regression-
based methods, where the oil pressure is predicted from other recorded vehicle data, and the
residual (prediction error) is compared to thresholds; and classification-based, in which the
vehicle signals are classified as anomalous or not for each time period. The regression-based
methods we investigated are: Gridded Residual, Boosted Regression Tree, and Feed-Forward
Neural Networks. The classification-based methods we investigated are: Gaussian Mixture
Models (GMM) and Replicator Neural Networks. We found that the regression-based detection
methods performed better than the classification-based detection methods.

Because there is a single fault, we could not use the normal receiver operating characteristic
method to measure quality of our anomaly detection methods. We originated a detection-quality
estimation method to overcome this, which sets a detection threshold high enough to guarantee
zero false alarms, then estimates detection quality using the detection horizon interval. Figure 23
shows that the oil pressure anomaly was detected hours before the vehicle diagnostic trouble
code became active.

While using the GMM classification algorithms, we found some unexplained inconsistencies
between the model training quality and the anomaly detection performance. After investigating

RM&ASC59

the discrepancy, we originated a useful regularization criterion to prevent use of such discrepant
GMMs.

These results are documented in a paper, Case study: Models for detectins low oil pressure
anomalies on commercial vehicles, which is being submitted for publication.

Anomaly Detection Models

Feed Forward
Neural

Network

Figure 22. Data-driven anomaly detection block diagram.

\
2.9 h-

< offk I
0000 06:00 12:00 18:00 00:00 06:00 12:00 18:00 00:00

Figure 23. Anomaly detection performance for the Gridded Residual method. The top graph shows instantaneous
and average absolute value of the residual (in units of standard deviations), as well as the detection threshold. The
lower graph shows the detected anomalies and the detection horizon.

RM&ASC60

Functional Relationship among Signals for Anomaly Detection and Virtual
Sensing

Problem
Data-driven anomaly detection, diagnostics, and prognostics algorithms are expensive to design
and implement. When they are added to an existing system, without the benefit of the original
engineering specification, the cost to determine the relevant signals and their relationships
through engineering analysis can be high. However, understanding the relationships is critical to
reduce the complexity of the problem, identifying the most important signals for each algorithm,
and simplifying the system by ignoring unimportant signals. Signals' functional relationships
also provide a framework for sensor fault detection so that anomaly detection, diagnostic, and
prognostic algorithms can ignore unreliable signals rather than malfunction. The problem
addressed by this effort is to automatically identify the functional relationships among a large
group of signals, allowing an anomaly detection algorithm to be created with reduced
engineering effort.

Goals
Create an automated method (or methods) to identify small groups of related signals, given a
large group of related and unrelated signals. In this problem, n signals are related when n-\ of
them can be used to predict the other signal. For example, the engine oil temperature and engine
coolant temperate signals exhibit a [mutual] functional dependence - each is a reasonable
predictor of the other because of the physics of heat conduction in the engine subsystems. On the
other hand, atmospheric pressure, air temperature, and RPM would not be expected to have a
functional dependence because weather, season, and climate factors drive pressure and
temperature, and RPM depends on vehicle speed, terrain, gear selection, pedal position, engine
power, etc.

Approach
Our initial survey of the data, as well as our anomaly detection results, indicated that an approach
utilizing exhaustive search would be fast enough for an initial trial. Based on this, our approach
is:

1. Identify the target set of signals 5.

2. Determine the maximum size n of the subsets 3\ of 5 to test;

3. Step through member of 5", training a regressor to predict one of the signals from the

other n-1 signals;

4. Evaluate the performance of each regressor from step 3; and,
5. Select the best regressors, based on the evaluations of step 4.

Results
Using n = 3, a set of 13 signals (positions, rates, torques, and temperatures), data from one
vehicle, two weeks of training data, and the gridded residual regressor, the model of normal

RM&ASC61

distributions over predefined subdomains, we found all 858 regressions and their performance.
We used the gridded residual regressor because of its good performance in the anomaly detection
work. The results are illustrated in Figure 24. The residual (histogram in the upper-right graph) is
the difference between the actual value and the predicted value. For this set of signals on this
vehicle's data, about 30% of the derived models have a standard deviation that is at most 10% of
typical values of the predicted signal value. The data also confirms that the signals chosen for the
oil pressure anomaly detection work (oil temperature and engine speed) are the best choices for
creating an oil pressure anomaly detector based on two other signals. This particular regressor
can be trained at a rate of about 20 per minute. To scan all useful sets of 3 signals out of 100
requires building almost 500,000 models; this is within the reach of even small organizations.

For higher dimensionality anomaly detection problems, other quickly-trained regressors such as
the boosted regression tree, might be preferable. The gridded residual is not as well suited for
functions of four or five variables because the training data would be sparsely distributed within
the bins.

The observed modeling and training performance show that this is a feasible method for
automatically screening signals to determine functional relationships that could be further
investigated for use in anomaly detection, diagnostics, or prognostics.

x ID4 Wheel-Based Vehicle Speed Histoqra
25r r-

0 2D 40 60 80 100 120 140

residuals of Engine Coolant Temperature =
f(Whesl-Based Vehicle Speed, Engine Oil Temperature 1)

„ 105 Stdresid=131 RMSerf0f=1.21

5 6 7

Engine Oil Temperature 1 Histogram

100 120

x IQ
9 Engine Coolant Temperature Histogram

 , ML
30 40 50 60 70 80 90 100 Engine Oil Temperature

Wheel-Based S'ehide Speed

RM&ASC62

Figure 24. Illustration of prediction of engine coolant temperature, based on vehicle speed and oil temperature. The
charts on the left show histograms of the speed and each temperature. The histogram on the upper-right shows the
prediction error histogram (in units of standard deviations). At the lower-right is a graphical visualization of the
relationship between the signals.

Multi-sensor Fault Detection

Problem
Measurement reliability greatly affects the health monitoring system (HMS) of the critical
components of a vehicle's electrical system (battery, alternator, and starter). Sensor fault
detection (SFD) is a subsystem of HMS responsible for detecting unreliable signals. In addition
to three typical categorical health states - green (OK), yellow (needs attention), and red
(deadlined) - an SFD-equipped HMS includes a black (unobservable) state. There are two types
of SFD:

1. Single-sensor fault detection (SSFD) considers signals individually and assesses the
signal reliability based on the observed values (in-range vs. out-of-range), rates of
change, autocorrelations, and other metrics.

2. Multi-sensor fault detection (MSFD) considers a group of redundant or physically related
signals and assesses the reliability of individual signals based on their consistency with
the other signals within the group.

Goals
To achieve a comprehensive and powerful SFD, we considered and identified general
approaches for MSFD of wide applicability and then customized for selected applications in
ground vehicles.

Approach
Two approaches are examined. When the measurements are statistically correlated, or more
generally, a functional relationship among the measured signals exists, a correlation-based
algorithm is a good choice for MSFD. We applied this approach for ensuring signal integrity of
battery voltage Vsatt, alternator voltage VAU, and starter-motor voltage. High cross-correlations
among these signals allow reliable MSFD, and multiple comparisons of individual cross-
correlations are used to determine the compromised signal. The correlations were computed
sequentially as the data became available. This approach is not limited to the electrical signals; it
can be used whenever the measurements are sufficiently correlated.

When the measurements are not sufficiently correlated but a number of probabilistic
relationships exist, the Dempster-Shafer algorithm was found to be effective. An MSFD based
on Dempster-Shafer requires rule definition, setting up an inference engine, and verification.

RM&ASC63

RM&ASC64

Goals
The objective of this study is to produce a case study for electronics prognostics. More
specifically, the goal is to induce a realistic failure to a commonly used circuit, which was
chosen to be a Switched-Mode Power Supply (SWMPS), analyze the data, and assess the
opportunities to detect the failure before the device stops performing its intended function, i.e.,
providing DC power.

Approach
Because electronics components can operate in normal operating conditions for many years,
inducing failures is based on accelerated aging using the Highly Accelerated Life Test (HALT).
Figure 27 depicts the basic principle behind the HALT: the components are characterized by
their strength with respect to different stressors, or loads (for electronics components these loads
are temperature, vibration, and over-voltage). In normal operation the components are designed
so that the load distribution is well-separated from the strength distribution, so that overlap,
which corresponds to failures, is low (see Figure 27a). As the components age, their strength
distribution widens and shifts closer to the load distribution, increasing the overlap between the
two distributions (see Figure 27b). F1ALT, on the other hand, shifts the load distribution towards
the strength distribution to accelerate failures of new components.

Increasing load and strength

: (c)

I
—stiervgth
- normal load
— HALT load
Hfariures

Increasing load and strength increasing load and strength

Figure 27. Distributions of strength and load. The overlap signifies failures, (a) Normal operation; (b) Aging; (c) HALT.

Figure 28 shows the circuit diagram of the SMPS, a photograph of the circuit, and a sketch of the
loading in three-dimensional space: temperature, voltage and vibration.

RM&ASC65

-uw

Figure 28. SMPS:
circuit diagram;
photograph of the
device mounted inside
the HALT chamber;
load profiles.

Automated controls for the HALT chamber and a separate, multi-resolution data collection
system have been developed. The slow-changing variables, such as temperature, and average
output voltage were saved continuously, while the waveforms of the high-frequency signals are
saved in bursts. In addition, custom data visualization and analysis tools have been developed. A
strong negative correlation between temperature and output voltage have been established
(Pearson correlation coefficient —1). To enable real-time monitoring, a window for the
computation of the correlation coefficient was selected.

Results
The part was driven to failure while operating at an elevated temperature. The real-time
correlation detected the failure in progress approximately 30 minutes before the part failed to
produce desired output voltage, as shown in Figure 29.

RM&ASC66

Strong correction

Healthy, normal waveforms I ° > •!> n » a

fHWHHH
'^ | tft S » H

MiMCffanns still limit Ok.

\ 14 >V 4 M»-
o ^"o _ t w ii » j

I in.il l.irlim-; v,„ stnrply
drops to OVDt.

I JO.

0 C 10 <S » »

V, failed, v^ normal.

kk4 -i" i '^

Figure 29. Temperature,
output voltage, and their
correlation coefficient are
shown in the main plot (the
color of traces corresponds
to the color of the axes). The
characteristic waveforms are
shown in separate plots.

Vehicle Data Warehousing and Analytics

Problem
When vehicle signal processing involves several signals, such as engine RPM, oil temperature,
and oil pressure, and the signals are stored in the MIMOSA schema, or the similarly designed
EPLS database, the asynchrony and the data schema complicate the processing. Alternate data
schema could make processing more convenient and faster.

Goal
Investigate the application of typical data warehouse schema to asynchronous, sparse, vehicle
data, highlighting differences in space required, and assess software performance and
complexity.

Approach
Our approach comprises the following four steps:

1. Select one of the best-practice data warehouse schema patterns. Data warehouse schema
influence storage requirements; more normalized schema save space and provide
improved access time, but required table joins increase the complexity of the access
software and may require more resources in the database server.

2. Develop a schema instance for our vehicle data. The table designs specify the intra- and
inter-table constraints and data storage details. The snowflake data warehouse schema
was selected for storage because of its highly orthogonal structure and compatibility with
existing business intelligence processes. The dimensions we defined include: data
collection system, driver, trip, fleet operating company, distance driven, time driven,
speed range, time, and vehicle. This permits the use of analytics software to view, for
example, fuel consumption vs. speed range and miles-on-vehicle. The fact tables include
engine and vehicle signals that are recorded at 1- and 10-second intervals.

RM&ASC67

3. Try to create the data warehouse efficiently. The performance of this step sets a limit on
how many vehicles' data can be stored in the data warehouse. The data warehouse is
populated from the relational data store through with an Extract-Transform-Load (ETL)
process. For our ETL system, we had to compensate for these characteristics of the
source table: (a) values are stored in the source table with one sample of one signal per
row; (b) values for a particular signal are sparse - they are not stored unless they are
sufficiently different from the latest stored value; (c) signal values' time stamps are not
synchronized. This required that our Transform step, in ETL, must read each signal's
[time, value] pair from the source database, resample the values to match the times in the
facts tables, filter the resampled stream to avoid aliasing, collect the values for the given
time, and insert the record into the fact table. Our 1- s fact table has 28 signals. The 10- s
fact table has 11 signals. Some signals that are commonly used in analysis are calculated
during ETL. For example, the engine power is pre-calculated from engine speed and
torque.

4. Experiment with data access and analysis to determine usability. This involves comparing
the software accessing the un-normalized, asynchronous, and sparse data with software
using the data warehouse

Results
The snowfiake schema pattern is suitable for vehicle data warehouses. Our ETL code is a hybrid
of Microsoft SQL Server Integration Services (SSIS) and Matlab, because implementation of the
synchronization, resampling, and filtering was not suited to SSIS. The database transfers and
computations process about 600 seconds of vehicle data per second, after accounting for fixed
start-up times (on a server with dual 3 GHz 64-bit processors, 12 GB of memory, and 1.8 TB
RAID-5 storage).

Fact table access for data analysis is simplified because a single query returns the synchronized
and filtered data. This replaces software to input, resample, and synchronize the raw signal data.
Query performance was 19 microseconds per row from the relational data store, and 7.9
microseconds per row from the data warehouse, when each returned row comprised the time and
three signal values. Figure 30 shows sample signals from the data warehouse. The raw data (not
shown) is much noisier.

RM&ASC68

2500

2000

1500

1000

500

0

2/3/10

-500

-1000

s^Y**

OMMrtHM

1:40

•Pressure [kPa]

•Speed [RPM]

Power [kW]

Figure 30. Engine oil, Pressure, Speed, and Power from fact table. Negative power is due to engine braking,
coincident with reduced engine RPM.

Fuel Usage Analysis

Problem
Vehicle condition and driver behavior are the two controllable factors that affect vehicle fuel
usage. On the other hand, vehicle and engine manufacturer and model, vehicle loading, wind
direction and speed, and wheel rolling resistance also affect fuel usage. The effects of these
factors must be included in analysis so that low or high fuel usage can be assigned to the correct
cause. For example, a fuel use rate of 6 miles per gallon in a commercial tractor-trailer truck
could be from a carefully driven vehicle in excellent shape which happens to be fully loaded and
driving into a strong wind. The same usage on a lightly loaded vehicle could indicate poor
condition or overly aggressive driving.

Goals
Our goals are to investigate models of mechanics of vehicle motion, to apply the models to
stored vehicle data to determine model parameters, and to analyze fuel use in different contexts.
Since vehicle forward motion is well modeled by Newtonian mechanics, our goal is to identify
and select a model, and use it to analyze fuel use. The components of these models include
speed, acceleration, aerodynamic resistance, rolling resistance, engine output, and braking

RM&ASC69

effects. Simple models may fail to account for critical signals, while overly complex models may
require signals that are unavailable or are only approximately known. Specifically, the vehicle
mass directly affects the energy required to overcome rolling resistance for initial acceleration
and for gaining elevation.

Approach
Our approach comprises the following five steps:

1. Develop a model of vehicle energy production (based on engine power) and energy used
to accelerate the vehicle, to overcome aerodynamic drag and rolling resistance, and to
gain or lose elevation;

2. Develop a mechanism to segment trips (where there is no significant change to vehicle
load) into short (e.g., 30-second) segments. The segments when wheel brakes are used
are discarded, as vehicles provide insufficient braking data and segment boundaries are
adjusted so the vehicle is in motion throughout each segment;

3. Obtain a best (least-squares) solution for the estimated vehicle mass, as well as
aerodynamic drag and rolling resistance coefficients;

4. Analyze several trips for several vehicles to determine the performance of this method;
5. Follow up with a feasibility investigation of the use of a machine learning model to

predict fuel consumption based on other engine sensor signals.

Results
The model was based on Newtonian mechanics and energy conservation, with least-square error
minimization used to extract model parameters. We analyzed data for five vehicles, including
wind direction and speed data for some trips to allow for more accurate estimation. Notably, we
compared estimates over segments of a trip in which the vehicles were continuously moving,
thus precluding any significant changes in the vehicle load. For that vehicle (covered in Figure
31), the mean mass estimate is 22.6 tons and the standard deviation is 3.3 tons - about 15% of
the mean. In the second half of the trip, the mean is also 22.6 tons, while the standard deviation
is 2.4 tons (about 11% of the mean). The vehicle cargo weight is available for two trips of the
same vehicle, with the resulting estimated vehicle empty weight differing by 8400 kg between
the two. However, the wind was westerly during one of the trips, and easterly during the other.
This highlights the uncertainty of mass estimates without accurate wind speed and direction data.
Because some critical data is unknown, the ultimate performance of this method cannot be
completely assessed. Although it appears to estimate vehicle mass consistently over a trip, the
differences between trips indicate that estimation accuracy is unacceptably low without further
data. Results for the coefficients of aerodynamic drag and rolling resistance are similar to those
for the vehicle mass, supporting our conclusion that precise modeling is possible only with
sufficient data availability.

As an extension effort, we studied the computational predictability of fuel consumption given a
number of on-board sensor readings. Figure 32 shows instantaneous engine fuel rate prediction

RM&ASC70

from engine speed and percent torque demanded. Boosted Regression Tree models were able to
model consumption efficiently, producing residuals for 10 long-range freight trucks (30+
deliveries each) with near-zero mean and standard deviation of at most 8 liters (2.1 gallons) per
hour. Furthermore, we were able to train accurate Support Vector Machines from this same data
to differentiate between engine manufacturers and designs, allowing for increased effectiveness
of fuel predictive models in application (via manufacturer-specific model selection).

By combining these estimates, it is possible to calculate higher level usage estimates, such as the
amount of fuel used to move one ton one mile, or to visualize the relationship of fuel required to
move one ton one mile and speed, to determine the most economical operating speed for a
particular load.

260

260

g 240
I
j 220

200

ieo

'K

120

ICD

I 00

« 60

eahB.

'i*S6**BJ*??

to

.♦*<

40 T j

201 I1

I

i:||99|f|B|f

I
i

31 36 41
Segment ID

Figure 31. Vehicle Elevation, Speed, and Estimated Mass. These are computed for discrete motion segments in a
single trip.

RM&ASC71

60-,

150

RPMs/25 0 0
Percent Torque

Figure 32. Predicting Fuel Consumption from On-Board Sensor Readings.

Solid Oxide Fuel Cell Diagnostics

Problem
Fuel cell auxiliary power systems are effective at assisting in efficient force deployment, but
must be robust in operating conditions to guarantee reliability in the field. Under separate
funding, we studied the forecasting of one particular failure mode (reactant ignition) in solid
oxide fuel cell systems using sequential Monte Carlo simulation and vector quantization4.
Despite our successes, detection rates failed to converge to 100%, especially when constrained to
low (< 5%) false alarms accepted.

Goals
In order to rectify this situation, we worked to identify, implement, and validate more advanced
classification methods that outperform particle filtering in forecasting solid oxide fuel cell
reactant ignition. Preference was given to methods also applicable to other domains.

Approach
We studied methods including (but not limited to): Feed-Forward Neural Networks (FFNNs),
Gaussian Mixture Models (GMMs), Infinite Gaussian Models, Gridded Regression Models,
Kernel Support Vector Machines, Structural Support Vector Machines, Boosted Regression
Trees, Gaussian Process Regression, Minimax Classifiers, and Additive Groves. Performance
was evaluated in terms of detection and false alarm rates, with training and testing performed on
data drawn from both fuel cell test systems.

4 Ardis, P.A., Nenadic, G.N., Walluk, M.R., Smith, D.F.; "Forecasting Reactant Ignition in Solid Oxide Fuel Cell
Systems", ASME lO1 International Fuel Cell Science, Engineering & Technology Conference; San Diego, CA, USA;
2012.

RM&ASC72

Results
The majority of studied methods outperformed the baseline but retained a significant number of
missed detections (see Figure 33). However, the last four listed all performed at near-perfect
levels (see Figure 34) and should be used as solutions for forecasting in the field. Furthermore,
we studied the use of Artificial Prediction Markets to fuse the results of multiple classifiers, but
do not recommend their use as they did not produce consistent improvements at all operating
points and increased training time in comparison to other fusion methods.

100
SOFC2 on SOFC1 FFNN w/variable # of layers

80 100

Minimum Mahalanobis Distance from GMM, SOFC2 on SOFC2
lOOr

a
re

o
a a

40 60
False Alarm Rate

Figure 33. Typical Receiver Operating Characteristic (ROC) Curves

-GMM(1)
GMM(2)

-GMM(3)
-GMM(4)
GMM(5)
GMM(6)

40 60
False Alarm Rate

80 100

100

80

Boosted Regression Trees Gaussian Process Regression

S 60

I 40

20

— SOFC2onSOFC2
 SOFC2onSOFC1

"

i i

-

20 80 100

1

0.95

0.9

| 0.85

J (
I 0-7
a

0.7

0.65

0.6

40 60
False Alarm Rate

Figure 34. ROC Curves of Top Performing Methods (Right: Zoom-In).

1
1 1

; , ."
■ rh^ '

f —<-SOFC2onSOFC2
^^SOFC2onSOFC1

■

/

/

1 i

-

0.05 0.1 0.15
False Alarm Rate

0,2

RM&ASC73

System Resilience
& Survivability

m
■ .

7. System Resilience and Survivability

7.1 Description of System Resilience and Survivability

System resilience is represented by system performance degradation in response to
disturbance or hazard events, and the ability to effectively and quickly restore
performance/function after the event Hazard events may be failures within the system
or may be an external attack or a series of attacks. More resilient systems can be
achieved by reducing system vulnerabilities and minimizing disruption when hazards
occur as well as through increasing the system adaptability and ability to recover to a
stable state after disruption. Survivability is associated with the level of system
vulnerability and is a subset of resilience.

Prior to undertaking any work in this specialized research area, CIMS determined it would
require a reliable source of real-world data to utilize in the research, to benchmark potential
results against, and to help ensure that our R&D efforts would be relevant to DoD needs.
Unfortunately, and despite numerous inquiries, we were unable to locate a military partner both
willing and able to provide the necessary real-world platform data. Accordingly, CIMS expended
no budget in system resilience and survivability.

Sed

